def regression_metrics(true,pred):

时间: 2023-08-31 12:29:20 浏览: 150
### 回答1: 该函数用于计算回归模型的性能指标,其中 true 表示真实值,pred 表示预测值。 以下是一些回归模型的常见性能指标: - 均方误差(Mean Squared Error, MSE):MSE 是预测值与真实值之间差的平方和的平均值。 - 均方根误差(Root Mean Squared Error, RMSE):RMSE 是 MSE 的平方根。 - 平均绝对误差(Mean Absolute Error, MAE):MAE 是预测值与真实值之间差的绝对值的平均值。 - 决定系数(Coefficient of Determination, R-squared):R-squared 表示模型能够解释数据方差的比例。R-squared 的取值范围在 0 到 1 之间,值越接近 1,说明模型的拟合效果越好。 下面是一个计算以上四个指标的函数实现: ```python import numpy as np def regression_metrics(true, pred): mse = np.mean((true - pred) ** 2) rmse = np.sqrt(mse) mae = np.mean(np.abs(true - pred)) r_squared = 1.0 - np.sum((true - pred) ** 2) / np.sum((true - np.mean(true)) ** 2) return {'MSE': mse, 'RMSE': rmse, 'MAE': mae, 'R-squared': r_squared} ``` 你可以使用该函数来计算回归模型的性能指标。 ### 回答2: def regression_metrics(true,pred)函数是一个用于回归模型评估的指标函数。该函数计算了预测值和实际值之间的多个指标,以评估模型的性能。该函数的输入参数包括真实值(true)和预测值(pred)。 该函数可以返回以下指标: - 均方误差(Mean Squared Error,MSE):该指标计算了预测值与真实值之间的平方差的平均值。MSE越小,表示模型的预测越准确。 - 均方根误差(Root Mean Squared Error,RMSE):该指标表示MSE的平方根。RMSE越小,表示模型的预测越准确。 - 平均绝对误差(Mean Absolute Error,MAE):该指标计算了预测值与真实值之间的绝对差的平均值。MAE越小,表示模型的预测越准确。 - 决定系数(Coefficient of Determination,R²):该指标表示模型对因变量变异的解释能力。取值范围为0到1,越接近1表示模型对观测数据的拟合效果越好。 该函数可以通过计算以上指标来评估回归模型的性能。根据这些指标的结果,可以判断模型的预测效果是好是坏,进而对模型做出优化或改进的措施。 ### 回答3: def regression_metrics(true,pred)是一个函数,用于评估回归模型的性能。该函数需要两个参数true和pred,表示真实值和预测值。 回归模型通常用于预测连续数值的结果,因此需要一些指标来衡量其预测能力。下面将介绍一些常用的回归评估指标,可以在函数中使用它们来计算模型的性能。 1. 均方误差(Mean Squared Error,MSE):计算预测值与真实值之间的差异的平方的均值。公式如下: MSE = (1/n) * Σ(true-pred)^2 其中n是样本数量。 2. 均方根误差(Root Mean Squared Error,RMSE):MSE的平方根。它与MSE的计算方法相同,但结果的量级与原始数据相同。 3. 平均绝对误差(Mean Absolute Error,MAE):计算预测值与真实值之间的差异的绝对值的均值。公式如下: MAE = (1/n) * Σ|true-pred| 其中n是样本数量。 4. 决定系数(Coefficient of Determination,R^2):用于衡量模型对观测值变异的解释能力,取值范围为0到1。公式如下: R^2 = 1 - (Σ(true-pred)^2) / (Σ(true-true_mean)^2) 其中true_mean是真实值的均值。 通过计算以上指标,我们可以得出回归模型的性能评估结果。在函数中,可以使用这些指标之一或多个来计算回归模型的性能,并返回结果供后续分析和比较使用。

相关推荐

import numpy as np import pandas as pd from sklearn.model_selection import train_test_split, GridSearchCV from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score from sklearn.metrics import confusion_matrix import matplotlib.pyplot as plt from termcolor import colored as cl import itertools from sklearn.preprocessing import StandardScaler from sklearn.tree import DecisionTreeClassifier from sklearn.neighbors import KNeighborsClassifier from sklearn.linear_model import LogisticRegression from sklearn.svm import SVC from sklearn.ensemble import RandomForestClassifier from xgboost import XGBClassifier from sklearn.neural_network import MLPClassifier from sklearn.ensemble import VotingClassifier # 定义模型评估函数 def evaluate_model(y_true, y_pred): accuracy = accuracy_score(y_true, y_pred) precision = precision_score(y_true, y_pred, pos_label='Good') recall = recall_score(y_true, y_pred, pos_label='Good') f1 = f1_score(y_true, y_pred, pos_label='Good') print("准确率:", accuracy) print("精确率:", precision) print("召回率:", recall) print("F1 分数:", f1) # 读取数据集 data = pd.read_csv('F:\数据\大学\专业课\模式识别\大作业\数据集1\data clean Terklasifikasi baru 22 juli 2015 all.csv', skiprows=16, header=None) # 检查数据集 print(data.head()) # 划分特征向量和标签 X = data.iloc[:, :-1] y = data.iloc[:, -1] # 划分训练集和测试集 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) # 6. XGBoost xgb = XGBClassifier(max_depth=4) y_test = np.array(y_test, dtype=int) xgb.fit(X_train, y_train) xgb_pred = xgb.predict(X_test) print("\nXGBoost评估结果:") evaluate_model(y_test, xgb_pred)

from sklearn import metrics from sklearn.model_selection import train_test_split from sklearn.linear_model import LogisticRegression from imblearn.combine import SMOTETomek from sklearn.metrics import auc, roc_curve, roc_auc_score from sklearn.feature_selection import SelectFromModel import pandas as pd import numpy as np import matplotlib matplotlib.use('TkAgg') import matplotlib.pyplot as plt from sklearn.metrics import confusion_matrix #1、数据输入 df_table_all = pd.read_csv(r"D:\trainafter.csv",index_col=0) #2、目标和特征区分 X = df_table_all.drop(["Y"],axis=1).values Y = np.array(df_table_all["Y"]) #3、按比例切割数据 X_train,X_test,Y_train,Y_test = train_test_split(X,Y,test_size=0.3,random_state=0) #4、样本平衡, st= SMOTETomek() X_train_st,Y_train_st = st.fit_resample(X_train,Y_train) #4、特征选择: #创建特征选择模型 sfm = SelectFromModel(LogisticRegression(penalty='l1',C=1.0,solver="liblinear")) #训练特征选择模型 sfm.fit(X_train,Y_train) #讲数据转换,剩下重要的特征 X_train_tiny = sfm.transform(X_train) X_test_tiny = sfm.transform(X_test) #5、创建模型 model = LogisticRegression(penalty='l1',C=1.0,solver="liblinear") model.fit(X_train_st_tiny,Y_train_st) #6、预测 y_pred = model.predict_proba(X_test_st_tiny) y_cate = model.predict(X_test_st_tiny) c=confusion_matrix(Y_test,y_cate) print(c) def report_auc(y_true,y_prob,title,out_name="",lw=2): fpr,tpr,_=roc_curve(y_true,y_prob,pos_label=1) print(fpr) print(tpr) plt.figure() plt.plot(fpr,tpr,color="darkorange",lw=lw,lable="ROC curve") plt.plot([0,1],[0,1],color="yellow",lw=lw,linestyle="--") plt.xlim([0,1]) plt.ylim([0,1.05]) plt.title(title) plt.legend(loc='lower right') plt.show(0) plt.savefig(r"d:\LR"+out_name,dpi=800) plt.close("all") report_auc(Y_test,y_pred[:,1],"Logistic with L1 panetly",'LG')

最新推荐

recommend-type

setuptools-41.0.0-py2.py3-none-any.whl

Node.js,简称Node,是一个开源且跨平台的JavaScript运行时环境,它允许在浏览器外运行JavaScript代码。Node.js于2009年由Ryan Dahl创立,旨在创建高性能的Web服务器和网络应用程序。它基于Google Chrome的V8 JavaScript引擎,可以在Windows、Linux、Unix、Mac OS X等操作系统上运行。 Node.js的特点之一是事件驱动和非阻塞I/O模型,这使得它非常适合处理大量并发连接,从而在构建实时应用程序如在线游戏、聊天应用以及实时通讯服务时表现卓越。此外,Node.js使用了模块化的架构,通过npm(Node package manager,Node包管理器),社区成员可以共享和复用代码,极大地促进了Node.js生态系统的发展和扩张。 Node.js不仅用于服务器端开发。随着技术的发展,它也被用于构建工具链、开发桌面应用程序、物联网设备等。Node.js能够处理文件系统、操作数据库、处理网络请求等,因此,开发者可以用JavaScript编写全栈应用程序,这一点大大提高了开发效率和便捷性。 在实践中,许多大型企业和组织已经采用Node.js作为其Web应用程序的开发平台,如Netflix、PayPal和Walmart等。它们利用Node.js提高了应用性能,简化了开发流程,并且能更快地响应市场需求。
recommend-type

Google Cloud Storage(使用gsutil下载)

Google Cloud CLI安装包GoogleCloudSDKInstaller.exe
recommend-type

setuptools-18.3.zip

Node.js,简称Node,是一个开源且跨平台的JavaScript运行时环境,它允许在浏览器外运行JavaScript代码。Node.js于2009年由Ryan Dahl创立,旨在创建高性能的Web服务器和网络应用程序。它基于Google Chrome的V8 JavaScript引擎,可以在Windows、Linux、Unix、Mac OS X等操作系统上运行。 Node.js的特点之一是事件驱动和非阻塞I/O模型,这使得它非常适合处理大量并发连接,从而在构建实时应用程序如在线游戏、聊天应用以及实时通讯服务时表现卓越。此外,Node.js使用了模块化的架构,通过npm(Node package manager,Node包管理器),社区成员可以共享和复用代码,极大地促进了Node.js生态系统的发展和扩张。 Node.js不仅用于服务器端开发。随着技术的发展,它也被用于构建工具链、开发桌面应用程序、物联网设备等。Node.js能够处理文件系统、操作数据库、处理网络请求等,因此,开发者可以用JavaScript编写全栈应用程序,这一点大大提高了开发效率和便捷性。 在实践中,许多大型企业和组织已经采用Node.js作为其Web应用程序的开发平台,如Netflix、PayPal和Walmart等。它们利用Node.js提高了应用性能,简化了开发流程,并且能更快地响应市场需求。
recommend-type

罗兰贝格_xx业务计划与控制体系最终报告gltp.pptx

罗兰贝格_xx业务计划与控制体系最终报告gltp.pptx
recommend-type

基于JSP医院在线挂号管理系统源码.zip

这个是一个JSP医院在线挂号管理系统,管理员角色包含以下功能:管理员登录,医生用户管理,修改密码,科室类别信息管理,医生信息管理,添加医生信息,查询医生信息,注册用户管理,黑名单管理,预约信息管理,查询预约信息,医生预约查询,预约信息统计,科室汇总统计等功能。患者角色包含以下功能:查看首页,患者登录,修改密码,修改个人资料,查看预约信息,查看医生信息,查看科室分类,医生查询,预约医生等功能。… 本项目实现的最终作用是基于JSP医院在线挂号管理系统 分为4个角色 第1个角色为管理员角色,实现了如下功能: - 修改密码 - 医生信息管理 - 医生用户管理 - 医生预约查询 - 查询医生信息 - 查询预约信息 - 注册用户管理 - 添加医生信息 - 科室汇总统计 - 科室类别信息管理 - 管理员登录 - 预约信息管理 - 预约信息统计 - 黑名单管理
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

解释minorization-maximization (MM) algorithm,并给出matlab代码编写的例子

Minorization-maximization (MM) algorithm是一种常用的优化算法,用于求解非凸问题或含有约束的优化问题。该算法的基本思想是通过构造一个凸下界函数来逼近原问题,然后通过求解凸下界函数的最优解来逼近原问题的最优解。具体步骤如下: 1. 初始化参数 $\theta_0$,设 $k=0$; 2. 构造一个凸下界函数 $Q(\theta|\theta_k)$,使其满足 $Q(\theta_k|\theta_k)=f(\theta_k)$; 3. 求解 $Q(\theta|\theta_k)$ 的最优值 $\theta_{k+1}=\arg\min_\theta Q(
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。