seq_list = np.concatenate(seq_list, axis=0)
时间: 2024-03-02 14:50:19 浏览: 116
这行代码将一个列表 seq_list 中的所有数组沿着第0个轴(行)进行拼接,最终生成一个新的一维数组。这里使用了 NumPy 库中的 np.concatenate 函数,其返回值就是拼接后的新数组。
例如,假设 seq_list 是一个包含三个一维数组的列表:
```python
import numpy as np
a = np.array([1, 2, 3])
b = np.array([4, 5, 6])
c = np.array([7, 8, 9])
seq_list = [a, b, c]
```
那么,使用 np.concatenate(seq_list, axis=0) 将这三个数组沿着第0个轴进行拼接:
```python
result = np.concatenate(seq_list, axis=0)
print(result) # [1 2 3 4 5 6 7 8 9]
```
这里的 result 就是拼接后的新数组,其内容为 [1, 2, 3, 4, 5, 6, 7, 8, 9]。
相关问题
def convert_midi(fp, _seq_len): notes_list = [] stream = converter.parse(fp) partitions = instrument.partitionByInstrument(stream) # print([(part.getInstrument().instrumentName, len(part.flat.notes)) for part in partitions]) # 获取第一个小节(Measure)中的节拍数 _press_time_dict = defaultdict(list) partition = None for part_sub in partitions: if part_sub.getInstrument().instrumentName.lower() == 'piano' and len(part_sub.flat.notes) > 0: partition = part_sub continue if partition is None: return None, None for _note in partition.flat.notes: _duration = str(_note.duration.quarterLength) if isinstance(_note, NoteClass.Note): _press_time_dict[str(_note.offset)].append([str(_note.pitch), _duration]) notes_list.append(_note) if isinstance(_note, ChordClass.Chord): press_list = _press_time_dict[str(_note.offset)] notes_list.append(_note) for sub_note in _note.notes: press_list.append([str(sub_note.pitch), _duration]) if len(_press_time_dict) == _seq_len: break _items = list(_press_time_dict.items()) _items = sorted(_items, key=lambda t:float(Fraction(t[0])))[:_seq_len] if len(_items) < _seq_len: return None,None last_step = Fraction(0,1) notes = np.zeros(shape=(_seq_len,len(notes_vocab),len(durations_vocab)),dtype=np.float32) steps = np.zeros(shape=(_seq_len,len(offsets_vocab)),dtype=np.float32) for idx,(cur_step,entities) in enumerate(_items): cur_step = Fraction(cur_step) diff_step = str(cur_step - last_step) if diff_step in offsets_vocab: steps[idx,offsets_vocab.index(diff_step)] = 1. last_step = cur_step else: steps[idx,offsets_vocab.index('0')] = 1. for pitch,quarterLen in entities: notes[idx,notes_vocab.index(pitch),durations_vocab.index(quarterLen if quarterLen in durations_vocab else '0')] = 1. notes = notes.reshape((seq_len,-1)) inputs = np.concatenate([notes,steps],axis=-1) return inputs,notes_list
这段代码是用来将midi文件转化为神经网络模型的输入,其中的`fp`参数是midi文件路径,`_seq_len`是序列长度。它首先使用`music21`库的`converter`模块读取midi文件,然后使用`instrument`模块按照乐器将音符分开。接着,它找到了乐器为钢琴的音轨,并将其中的音符按照时间顺序收集到`_press_time_dict`字典中。最后,它将`_press_time_dict`中的音符转化为神经网络模型的输入,其中包括每个时间步的音符和持续时间等信息。
test_path = "stock_daily/8/stock_test.csv" with open(test_path) as f: self.data = np.loadtxt(f, delimiter=",") # addi=np.zeros((self.data.shape[0],1)) # self.data=np.concatenate((self.data,addi),axis=1) self.data = self.data[:, 0:6] # self.data = np.vstack((self.data1, self.data[:, 4])) for i in range(len(self.data[0])): self.data[:, i] = (self.data[:, i] - mean_list[i]) / (std_list[i] + 1e-8) self.value = torch.rand(self.data.shape[0] - SEQ_LEN, SEQ_LEN, self.data.shape[1]) self.label = torch.rand(self.data.shape[0] - SEQ_LEN, 1) for i in range(self.data.shape[0] - SEQ_LEN): self.value[i, :, :] = torch.from_numpy(self.data[i:i + SEQ_LEN, :].reshape(SEQ_LEN, self.data.shape[1])) self.label[i, :] = self.data[i + SEQ_LEN, 0] self.data = self.value
这段代码是一个数据预处理的过程,首先从指定路径读取测试数据,然后将读取的数据进行归一化处理,接着将处理后的数据按照指定的时间序列长度(SEQ_LEN)切分成多个小数据集(value),同时对应的标签(label)为每个小数据集的最后一个时间点的数据。最后将处理后的数据存储在self.data中。这个过程是为了将原始的数据转化为神经网络可以接受的形式,以便进行训练和预测。
阅读全文