notes = np.concatenate((notes, seq[:, :NUM_CLASSES]), axis=0) TypeError: string indices must be integers
时间: 2024-02-27 17:57:30 浏览: 72
这个错误通常是指在使用切片操作时,切片的索引应该是整数,但实际上给出的是字符串。这可能是因为您的代码中使用了错误的变量或索引,导致出现了这个错误。
请检查您的代码,确保所有切片索引都是整数,例如:
```
notes = np.concatenate((notes, seq[0:10, 1:5]), axis=0)
```
这个代码会将seq的第1到10行,第2到5列的部分拼接到notes上。如果您还有其他问题,请让我知道。
相关问题
X_train = np.concatenate((setosa[:40], versicolor[:40], virginica[:40]), axis=0) y_train = np.concatenate((np.zeros(40), np.ones(40), np.ones(40)*2), axis=0) X_test = np.concatenate((setosa[40:], versicolor[40:], virginica[40:]), axis=0) y_test = np.concatenate((np.zeros(10), np.ones(10), np.ones(10)*2), axis=0)这里为什么会有两个测试集和两个数据集
非常抱歉,我的回答有误,关于这个问题,以下是正确的观点:
在这段代码中,确实出现了两个训练集和两个测试集。这是因为每个类别的样本数是50个,要求从每个类别中选择40个样本作为训练集,10个样本作为测试集。因此,我们需要从每个类别中分别选择前40个样本作为训练集,后10个样本作为测试集,然后将三个类别的训练集和测试集分别合并起来。
具体地说,代码中的第一行:
```
X_train = np.concatenate((setosa[:40], versicolor[:40], virginica[:40]), axis=0)
```
将setosa、versicolor和virginica三个类别的前40个样本分别合并起来,作为训练集X_train。第二行:
```
y_train = np.concatenate((np.zeros(40), np.ones(40), np.ones(40)*2), axis=0)
```
将三个类别的训练集对应的标签(0、1、2)合并起来,作为训练集标签y_train。对于测试集,代码中的第三行:
```
X_test = np.concatenate((setosa[40:], versicolor[40:], virginica[40:]), axis=0)
```
将setosa、versicolor和virginica三个类别的后10个样本分别合并起来,作为测试集X_test。第四行:
```
y_test = np.concatenate((np.zeros(10), np.ones(10), np.ones(10)*2), axis=0)
```
将三个类别的测试集对应的标签(0、1、2)合并起来,作为测试集标签y_test。
因此,这里只有一个训练集和一个测试集,但这个训练集和测试集是由每个类别的前40个和后10个样本组成的。
def load_dataset(seq_len,batch_size=32): note_arr = np.load("notes_array.npy") _n_notes, _n_durations = note_arr.shape[1:] offset_arr = np.load("offsets_array.npy") _n_offsets = offset_arr.shape[1] note_arr = np.reshape(note_arr, (note_arr.shape[0], -1)) note_data = np.concatenate([note_arr, offset_arr], axis=-1) _n_embeddings = note_data.shape[-1]
这段代码定义了一个名为load_dataset()的函数,用来加载音符和节奏序列数据集。它首先从文件中加载note_arr、offset_arr数组,这两个数组分别表示音符和节奏序列的二维矩阵形式。然后,通过np.concatenate()函数将这两个数组按列合并成一个新的数组note_data,其中每个元素都表示一个音符或节奏的特征向量。接着,通过np.reshape()函数将note_arr数组转换成二维矩阵形式,方便后续处理。最后,该函数返回了经过预处理和划分后的数据集dataset,以及音符、节奏和偏移量的个数n_notes、n_durations和n_offsets,以及嵌入向量的维度n_embeddings。
阅读全文