for (auto it1 = m_lockRects.begin(); it1 != m_lockRects.end();it1 ++) { it1->clear(); } m_lockRects.clear(); { for (auto rectList : m_attri->lockRectLists) { std::map<int,int> lockRectMap; int i = 0; for (auto pos : rectList) { lockRectMap.insert(make_pair(i,pos)); i++; } m_lockRects.push_back(lockRectMap); } }

时间: 2024-02-14 11:31:42 浏览: 43
这段代码的作用是清空并重新填充一个名为 m_lockRects 的容器。首先,通过循环遍历 m_lockRects 容器中的元素,并调用 clear() 方法清空每个元素。然后,调用 clear() 方法清空整个 m_lockRects 容器。 接下来,通过循环遍历 m_attri->lockRectLists 容器中的元素 rectList,创建一个名为 lockRectMap 的 map 容器。然后,通过循环遍历 rectList 中的每个元素 pos,将其插入到 lockRectMap 容器中,键为 i,值为 pos。接着,将 lockRectMap 容器插入到 m_lockRects 容器的末尾。 这样,m_lockRects 容器中就包含了 m_attri->lockRectLists 中每个 rectList 的对应的 lockRectMap。整个过程实现了清空和重新填充 m_lockRects 容器的功能。
相关问题

for(auto it=mp_trans.begin()+1;it!=mp_trans.end();it++)这句错在哪里

这句代码中的问题在于,对于大多数 C++ 容器来说,不支持通过 `begin()` 返回的迭代器进行指针算术运算。因此,使用 `begin()` 返回的迭代器不能直接进行加法操作。 要解决这个问题,可以使用 `std::next` 函数来获得从第二个元素开始的迭代器。下面是修改后的代码: ```cpp for (auto it = std::next(mp_trans.begin()); it != mp_trans.end(); ++it) { std::cout << it->first << " => " << it->second << '\n'; } ``` 在这个示例中,我们使用了 `std::next` 函数来获得从第二个元素开始的迭代器。`std::next` 接受一个迭代器和一个偏移量作为参数,并返回指定偏移量后的迭代器。 通过将 `mp_trans.begin()` 作为参数传递给 `std::next`,我们获得了从第二个元素开始的迭代器,并将其用于循环遍历。 请注意,为了使用 `std::next` 函数,您需要包含 `<iterator>` 头文件。

for(it = m_ctrls.begin(); it!=m_ctrls.end(); ++it) { ::GetClassName(it->m_hCtrl, pszCN, sizeof(pszCN)); if (strcmp(pszCN, a_pszClassName) == 0) { cnt++; it->m_hFix = a_hFix; it->m_vFix = a_vFix; } }怎样把pszCN转化为LPCTSTR型

将pszCN转换为LPCTSTR类型的字符串,可以直接使用字符串类型转换宏定义T()。 例如,以下代码将pszCN转换为LPCTSTR类型的字符串: ``` for(it = m_ctrls.begin(); it!=m_ctrls.end(); ++it) { ::GetClassName(it->m_hCtrl, pszCN, sizeof(pszCN)); if (strcmp(pszCN, T(a_pszClassName)) == 0) { cnt++; it->m_hFix = a_hFix; it->m_vFix = a_vFix; } } ``` 这里使用了T()宏将a_pszClassName转换为LPCTSTR类型的字符串,然后再与pszCN进行字符串比较。T()宏会根据UNICODE宏的定义,在需要时自动转换为Unicode或者ANSI编码的字符串。

相关推荐

void Extract1DEdge::GetEdgePoint(int threshold, Translation traslation, Selection selection) { if (m_mInputMat.empty()) { return; } if (m_mInputMat.channels() > 1) { cvtColor(m_mInputMat, m_mInputMat, COLOR_BGR2GRAY); } double* ptr = m_mInputMat.ptr<double>(0); m_vpCandidate.clear(); m_vEdgesResult.clear(); //The theshold condition is met for (int i = 0; i < m_mInputMat.cols; i++) { double dGradient = abs(ptr[i]); if (dGradient >= threshold) { m_vpCandidate.push_back(Point2d(i, ptr[i])); } } if (m_vpCandidate.size() == 0) { return; } //The translation condition is met if (traslation == Translation::Poisitive)// from dark to light: f'(x)>0 { for (vector::iterator iter = m_vpCandidate.begin(); iter != m_vpCandidate.end();) { if ((*iter).y <= 0) { //cout << "Negative Edge: " << (*iter).y << endl; iter = m_vpCandidate.erase(iter); } else { iter++; } } } else if (traslation == Translation::Negative) { for (vector::iterator iter = m_vpCandidate.begin(); iter != m_vpCandidate.end();) { if ((*iter).y > 0) { iter = m_vpCandidate.erase(iter); } else { iter++; } } } if (m_vpCandidate.size() == 0) { return; } //The selection condition is met if (selection == Selection::Fisrt) { m_vpCandidate.erase(m_vpCandidate.begin() + 1, m_vpCandidate.end()); } else if (selection == Selection::Last) { m_vpCandidate.erase(m_vpCandidate.begin(), m_vpCandidate.end() - 1); } else if (selection == Selection::Strongest) { Point2d pdMax(0, 0); double dGradientMax = 0; for(Point2d item: m_vpCandidate) { if (abs(item.y) >= dGradientMax) { pdMax = item; dGradientMax = abs(item.y); } } m_vpCandidate.clear(); m_vpCandidate.push_back(pdMax); } else if (selection == Selection::weakest) { Point2d pdMin(0, 99999999); for (Point2d item : m_vpCandidate) { if (abs(item.y) <= pdMin.y) { pdMin.y = abs(item.y); pdMin.x = item.x; } } m_vpCandidate.clear(); m_vpCandidate.push_back(pdMin); } double dEdgex = 0, dEdgey = 0; for (Point2d item : m_vpCandidate) { if (isinf(m_dK)) { dEdgex = m_pdStart.x; dEdgey = m_pdStart.y + sin(to_radian(m_dAngle)) * item.x; } else { dEdgex = m_pdStart.x + item.x * cos(to_radian(m_dAngle)); dEdgey = m_dK * dEdgex + m_dB; } m_vEdgesResult.push_back(Edge1D_Result(Point2d(dEdgex, dEdgey), item.y)); } } 使用 OpenCvSharp4.6 编写函数 GetEdgePoint(int threshold, Translation traslation, Selection selection)

最新推荐

recommend-type

基于STM32控制遥控车的蓝牙应用程序

基于STM32控制遥控车的蓝牙应用程序
recommend-type

利用迪杰斯特拉算法的全国交通咨询系统设计与实现

全国交通咨询模拟系统是一个基于互联网的应用程序,旨在提供实时的交通咨询服务,帮助用户找到花费最少时间和金钱的交通路线。系统主要功能包括需求分析、个人工作管理、概要设计以及源程序实现。 首先,在需求分析阶段,系统明确了解用户的需求,可能是针对长途旅行、通勤或日常出行,用户可能关心的是时间效率和成本效益。这个阶段对系统的功能、性能指标以及用户界面有明确的定义。 概要设计部分详细地阐述了系统的流程。主程序流程图展示了程序的基本结构,从开始到结束的整体运行流程,包括用户输入起始和终止城市名称,系统查找路径并显示结果等步骤。创建图算法流程图则关注于核心算法——迪杰斯特拉算法的应用,该算法用于计算从一个节点到所有其他节点的最短路径,对于求解交通咨询问题至关重要。 具体到源程序,设计者实现了输入城市名称的功能,通过 LocateVex 函数查找图中的城市节点,如果城市不存在,则给出提示。咨询钱最少模块图是针对用户查询花费最少的交通方式,通过 LeastMoneyPath 和 print_Money 函数来计算并输出路径及其费用。这些函数的设计体现了算法的核心逻辑,如初始化每条路径的距离为最大值,然后通过循环更新路径直到找到最短路径。 在设计和调试分析阶段,开发者对源代码进行了严谨的测试,确保算法的正确性和性能。程序的执行过程中,会进行错误处理和异常检测,以保证用户获得准确的信息。 程序设计体会部分,可能包含了作者在开发过程中的心得,比如对迪杰斯特拉算法的理解,如何优化代码以提高运行效率,以及如何平衡用户体验与性能的关系。此外,可能还讨论了在实际应用中遇到的问题以及解决策略。 全国交通咨询模拟系统是一个结合了数据结构(如图和路径)以及优化算法(迪杰斯特拉)的实用工具,旨在通过互联网为用户提供便捷、高效的交通咨询服务。它的设计不仅体现了技术实现,也充分考虑了用户需求和实际应用场景中的复杂性。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【实战演练】基于TensorFlow的卷积神经网络图像识别项目

![【实战演练】基于TensorFlow的卷积神经网络图像识别项目](https://img-blog.csdnimg.cn/20200419235252200.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3FxXzM3MTQ4OTQw,size_16,color_FFFFFF,t_70) # 1. TensorFlow简介** TensorFlow是一个开源的机器学习库,用于构建和训练机器学习模型。它由谷歌开发,广泛应用于自然语言
recommend-type

CD40110工作原理

CD40110是一种双四线双向译码器,它的工作原理基于逻辑编码和译码技术。它将输入的二进制代码(一般为4位)转换成对应的输出信号,可以控制多达16个输出线中的任意一条。以下是CD40110的主要工作步骤: 1. **输入与编码**: CD40110的输入端有A3-A0四个引脚,每个引脚对应一个二进制位。当你给这些引脚提供不同的逻辑电平(高或低),就形成一个四位的输入编码。 2. **内部逻辑处理**: 内部有一个编码逻辑电路,根据输入的四位二进制代码决定哪个输出线应该导通(高电平)或保持低电平(断开)。 3. **输出**: 输出端Y7-Y0有16个,它们分别与输入的编码相对应。当特定的
recommend-type

全国交通咨询系统C++实现源码解析

"全国交通咨询系统C++代码.pdf是一个C++编程实现的交通咨询系统,主要功能是查询全国范围内的交通线路信息。该系统由JUNE于2011年6月11日编写,使用了C++标准库,包括iostream、stdio.h、windows.h和string.h等头文件。代码中定义了多个数据结构,如CityType、TrafficNode和VNode,用于存储城市、交通班次和线路信息。系统中包含城市节点、交通节点和路径节点的定义,以及相关的数据成员,如城市名称、班次、起止时间和票价。" 在这份C++代码中,核心的知识点包括: 1. **数据结构设计**: - 定义了`CityType`为short int类型,用于表示城市节点。 - `TrafficNodeDat`结构体用于存储交通班次信息,包括班次名称(`name`)、起止时间(原本注释掉了`StartTime`和`StopTime`)、运行时间(`Time`)、目的地城市编号(`EndCity`)和票价(`Cost`)。 - `VNodeDat`结构体代表城市节点,包含了城市编号(`city`)、火车班次数(`TrainNum`)、航班班次数(`FlightNum`)以及两个`TrafficNodeDat`数组,分别用于存储火车和航班信息。 - `PNodeDat`结构体则用于表示路径中的一个节点,包含城市编号(`City`)和交通班次号(`TraNo`)。 2. **数组和变量声明**: - `CityName`数组用于存储每个城市的名称,按城市编号进行索引。 - `CityNum`用于记录城市的数量。 - `AdjList`数组存储各个城市的线路信息,下标对应城市编号。 3. **算法与功能**: - 系统可能实现了Dijkstra算法或类似算法来寻找最短路径,因为有`MinTime`和`StartTime`变量,这些通常与路径规划算法有关。 - `curPath`可能用于存储当前路径的信息。 - `SeekCity`函数可能是用来查找特定城市的函数,其参数是一个城市名称。 4. **编程语言特性**: - 使用了`#define`预处理器指令来设置常量,如城市节点的最大数量(`MAX_VERTEX_NUM`)、字符串的最大长度(`MAX_STRING_NUM`)和交通班次的最大数量(`MAX_TRAFFIC_NUM`)。 - `using namespace std`导入标准命名空间,方便使用iostream库中的输入输出操作。 5. **编程实践**: - 代码的日期和作者注释显示了良好的编程习惯,这对于代码维护和团队合作非常重要。 - 结构体的设计使得数据组织有序,方便查询和操作。 这个C++代码实现了全国交通咨询系统的核心功能,涉及城市节点管理、交通班次存储和查询,以及可能的路径规划算法。通过这些数据结构和算法,用户可以查询不同城市间的交通信息,并获取最优路径建议。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

【实战演练】使用Seaborn和Plotly进行数据可视化项目

![【实战演练】使用Seaborn和Plotly进行数据可视化项目](https://ask.qcloudimg.com/http-save/yehe-5669851/lifus0nfda.jpeg) # 1. 数据可视化的基础** 数据可视化是指将数据转换为图形或图表,以帮助人们理解和解释数据。它是一种强大的工具,可以揭示数据中的模式、趋势和异常情况,从而帮助人们做出更好的决策。 数据可视化有许多不同的类型,包括条形图、折线图、散点图和饼图。每种类型都有其独特的优点和缺点,具体选择哪种类型取决于数据类型和要传达的信息。 在创建数据可视化时,重要的是要考虑以下因素: * **受众:**
recommend-type

Python的六种数据类型

Python是一种动态类型的高级编程语言,它的六种基本数据类型包括: 1. **数字类型(Numeric Types)**:主要有整型(int)、浮点型(float)、复数型(complex)。整型用于表示整数值,浮点型用于存储小数,复数型用于处理复数。 2. **字符串类型(String Type)**:用单引号('')或双引号("")包围的文本序列,用来存储文本数据。 3. **布尔类型(Boolean Type)**:只有两个值,True和False,表示逻辑判断的结果。 4. **列表类型(List Type)**:有序的可变序列,可以包含不同类型的元素。 5. **元组类型
recommend-type

DFT与FFT应用:信号频谱分析实验

"数字信号处理仿真实验教程,主要涵盖DFT(离散傅里叶变换)和FFT(快速傅里叶变换)的应用,适用于初学者进行频谱分析。" 在数字信号处理领域,DFT(Discrete Fourier Transform)和FFT(Fast Fourier Transform)是两个至关重要的概念。DFT是将离散时间序列转换到频域的工具,而FFT则是一种高效计算DFT的方法。在这个北京理工大学的实验中,学生将通过实践深入理解这两个概念及其在信号分析中的应用。 实验的目的在于: 1. 深化对DFT基本原理的理解,这包括了解DFT如何将时域信号转化为频域表示,以及其与连续时间傅里叶变换(DTFT)的关系。DFT是DTFT在有限个等间隔频率点上的取样,这有助于分析有限长度的离散信号。 2. 应用DFT来分析信号的频谱特性,这对于识别信号的频率成分至关重要。在实验中,通过计算和可视化DFT的结果,学生可以观察信号的幅度谱和相位谱,从而揭示信号的频率组成。 3. 通过实际操作,深入理解DFT在频谱分析中的作用,以及如何利用它来解释现实世界的现象并解决问题。 实验内容分为几个部分: (1)首先,给出了一个5点序列x,通过计算DFT并绘制幅度和相位图,展示了DFT如何反映信号的幅度和相位特性。 (2)然后,使用相同序列x,但这次通过FFT进行计算,并用茎图展示结果。FFT相比于DFT提高了计算效率,尤其是在处理大数据集时。 (3)进一步扩展,序列x通过添加零填充至128点,再次进行FFT计算。这样做可以提高频率分辨率,使得频谱分析更为精确。 (4)最后,通过一个包含两种正弦波的11点序列,演示了DFT如何提供DTFT的近似,当N增大时,DFT的结果更接近于DTFT。 实验通过MATLAB代码实现,学生可以在实际操作中熟悉这些概念,从而增强对数字信号处理理论的理解。通过这些实验,学生不仅能够掌握DFT和FFT的基本运算,还能学会如何利用它们来分析和解析复杂的信号结构。