使用pytorch写一段transformer的代码
时间: 2023-04-08 09:00:55 浏览: 187
我可以回答这个问题。以下是一个简单的Transformer模型的PyTorch代码示例:
```
import torch
import torch.nn as nn
import torch.nn.functional as F
class Transformer(nn.Module):
def __init__(self, input_dim, hidden_dim, num_layers, num_heads):
super(Transformer, self).__init__()
self.embedding = nn.Embedding(input_dim, hidden_dim)
self.pos_encoding = PositionalEncoding(hidden_dim)
self.encoder_layers = nn.ModuleList([EncoderLayer(hidden_dim, num_heads) for _ in range(num_layers)])
self.decoder_layers = nn.ModuleList([DecoderLayer(hidden_dim, num_heads) for _ in range(num_layers)])
self.fc = nn.Linear(hidden_dim, input_dim)
def forward(self, src, trg):
src = self.embedding(src)
trg = self.embedding(trg)
src = self.pos_encoding(src)
trg = self.pos_encoding(trg)
for layer in self.encoder_layers:
src = layer(src)
for layer in self.decoder_layers:
trg = layer(trg, src)
output = self.fc(trg)
return output
class PositionalEncoding(nn.Module):
def __init__(self, hidden_dim, max_len=5000):
super(PositionalEncoding, self).__init__()
self.dropout = nn.Dropout(p=0.1)
pe = torch.zeros(max_len, hidden_dim)
position = torch.arange(0, max_len, dtype=torch.float).unsqueeze(1)
div_term = torch.exp(torch.arange(0, hidden_dim, 2).float() * (-math.log(10000.0) / hidden_dim))
pe[:, 0::2] = torch.sin(position * div_term)
pe[:, 1::2] = torch.cos(position * div_term)
pe = pe.unsqueeze(0).transpose(0, 1)
self.register_buffer('pe', pe)
def forward(self, x):
x = x + self.pe[:x.size(0), :]
return self.dropout(x)
class EncoderLayer(nn.Module):
def __init__(self, hidden_dim, num_heads):
super(EncoderLayer, self).__init__()
self.self_attn = MultiHeadAttention(hidden_dim, num_heads)
self.feed_forward = FeedForward(hidden_dim)
def forward(self, x):
x = x + self.self_attn(x)
x = x + self.feed_forward(x)
return x
class DecoderLayer(nn.Module):
def __init__(self, hidden_dim, num_heads):
super(DecoderLayer, self).__init__()
self.self_attn = MultiHeadAttention(hidden_dim, num_heads)
self.src_attn = MultiHeadAttention(hidden_dim, num_heads)
self.feed_forward = FeedForward(hidden_dim)
def forward(self, x, src):
x = x + self.self_attn(x)
x = x + self.src_attn(x, src)
x = x + self.feed_forward(x)
return x
class MultiHeadAttention(nn.Module):
def __init__(self, hidden_dim, num_heads):
super(MultiHeadAttention, self).__init__()
self.num_heads = num_heads
self.head_dim = hidden_dim // num_heads
self.query = nn.Linear(hidden_dim, hidden_dim)
self.key = nn.Linear(hidden_dim, hidden_dim)
self.value = nn.Linear(hidden_dim, hidden_dim)
self.fc = nn.Linear(hidden_dim, hidden_dim)
def forward(self, x):
batch_size = x.size(0)
query = self.query(x).view(batch_size, -1, self.num_heads, self.head_dim).transpose(1, 2)
key = self.key(x).view(batch_size, -1, self.num_heads, self.head_dim).transpose(1, 2)
value = self.value(x).view(batch_size, -1, self.num_heads, self.head_dim).transpose(1, 2)
attn_weights = F.softmax(torch.matmul(query, key.transpose(-2, -1)) / math.sqrt(self.head_dim), dim=-1)
attn_output = torch.matmul(attn_weights, value)
attn_output = attn_output.transpose(1, 2).contiguous().view(batch_size, -1, self.num_heads * self.head_dim)
output = self.fc(attn_output)
return output
class FeedForward(nn.Module):
def __init__(self, hidden_dim, dropout=0.1):
super(FeedForward, self).__init__()
self.fc1 = nn.Linear(hidden_dim, hidden_dim * 4)
self.fc2 = nn.Linear(hidden_dim * 4, hidden_dim)
self.dropout = nn.Dropout(dropout)
def forward(self, x):
x = F.relu(self.fc1(x))
x = self.dropout(x)
x = self.fc2(x)
return x
```
这段代码实现了一个Transformer模型,包括编码器和解码器。其中,编码器由多个EncoderLayer组成,解码器由多个DecoderLayer组成。每个EncoderLayer和DecoderLayer包含了多头自注意力和前馈网络。在模型的前向传播过程中,输入先经过嵌入层和位置编码层,然后分别经过编码器和解码器,最后通过全连接层输出结果。
阅读全文