c++基于opencv对机械臂和相机手眼标定的代码
时间: 2023-09-04 15:11:36 浏览: 204
下面是基于OpenCV实现机械臂和相机手眼标定的C++代码示例:
```c++
#include <iostream>
#include <opencv2/opencv.hpp>
#include <opencv2/aruco.hpp>
using namespace std;
using namespace cv;
int main()
{
// 读取相机图像
Mat cameraImage = imread("camera.jpg");
// 读取机械臂姿态数据
vector<Mat> robotPoses;
for (int i = 1; i <= 10; i++) {
string filename = "robot" + to_string(i) + ".txt";
Mat pose = Mat::zeros(4, 4, CV_64F);
ifstream fin(filename);
for (int j = 0; j < 4; j++) {
for (int k = 0; k < 4; k++) {
fin >> pose.at<double>(j, k);
}
}
robotPoses.push_back(pose);
}
// 读取相机姿态数据
vector<Mat> cameraPoses;
for (int i = 0; i < 5; i++) {
string filename = "camera" + to_string(i) + ".txt";
Mat pose = Mat::zeros(4, 4, CV_64F);
ifstream fin(filename);
for (int j = 0; j < 4; j++) {
for (int k = 0; k < 4; k++) {
fin >> pose.at<double>(j, k);
}
}
cameraPoses.push_back(pose);
}
// 棋盘格参数
int boardWidth = 9; // 棋盘格宽度
int boardHeight = 6; // 棋盘格高度
float squareSize = 25.0f; // 棋盘格大小(毫米)
// 棋盘格角点坐标
vector<vector<Point3f>> objectPoints;
for (int i = 0; i < robotPoses.size(); i++) {
vector<Point3f> obj;
for (int j = 0; j < boardHeight; j++) {
for (int k = 0; k < boardWidth; k++) {
obj.push_back(Point3f(j * squareSize, k * squareSize, 0));
}
}
objectPoints.push_back(obj);
}
// 计算机械臂末端执行器和相机之间的位姿矩阵
vector<Mat> robotToCameraPoses;
for (int i = 0; i < robotPoses.size(); i++) {
Mat robotPose = robotPoses[i];
Mat cameraPose = cameraPoses[i];
Mat robotToCameraPose = cameraPose.inv() * robotPose;
robotToCameraPoses.push_back(robotToCameraPose);
}
// 相机标定
vector<vector<Point2f>> imagePoints;
vector<int> markerIds;
vector<vector<Point2f>> markerCorners;
Ptr<aruco::Dictionary> dictionary = aruco::getPredefinedDictionary(aruco::DICT_6X6_250);
aruco::detectMarkers(cameraImage, dictionary, markerCorners, markerIds);
aruco::drawDetectedMarkers(cameraImage, markerCorners, markerIds);
vector<Vec3d> rvecs, tvecs;
aruco::estimatePoseSingleMarkers(markerCorners, squareSize, cameraMatrix, distCoeffs, rvecs, tvecs);
for (int i = 0; i < markerIds.size(); i++) {
vector<Point2f> corners = markerCorners[i];
imagePoints.push_back(corners);
}
// 手眼标定
Mat R, T;
solveHandEye(objectPoints, imagePoints, robotToCameraPoses, R, T);
// 输出结果
cout << "Hand-eye calibration matrix:" << endl << R << endl << T << endl;
return 0;
}
```
在这个示例中,我们首先读取了机械臂和相机的姿态数据,然后定义了棋盘格的参数和角点坐标,并通过`aruco::detectMarkers`和`aruco::estimatePoseSingleMarkers`函数检测和计算出相机图像中的标记物的位姿矩阵。接着,我们计算机械臂末端执行器和相机之间的位姿矩阵,并使用`solveHandEye`函数对机械臂和相机之间的转换矩阵进行计算,并输出结果。
需要注意的是,这个示例仅供参考,具体的实现还需要根据实际情况进行调整和优化,例如相机标定的方法和标记物的选择等。
阅读全文