np.concatenate对应于torch
时间: 2024-05-18 22:11:11 浏览: 135
np.concatenate对应于torch中的torch.cat。两者都是用于拼接张量的函数。在numpy中,np.concatenate函数可以将多个数组按照指定的轴进行拼接,而在torch中,torch.cat函数也可以实现相同的功能。不同的是,在torch中,拼接的维度由dim参数指定,而在numpy中,维度由axis参数指定。所以,np.concatenate函数对应于torch中的torch.cat函数。<span class="em">1</span><span class="em">2</span><span class="em">3</span>
#### 引用[.reference_title]
- *1* *2* [[python]torch.cat和numpy.concatenate对应拼接](https://blog.csdn.net/FL1623863129/article/details/128221181)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_1"}}] [.reference_item style="max-width: 50%"]
- *3* [pytorch基础学习(2)concatenate,np.bincount,from_numpy,torch.sum](https://blog.csdn.net/weixin_50862344/article/details/126796799)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_1"}}] [.reference_item style="max-width: 50%"]
[ .reference_list ]
阅读全文