opencv两图相减
时间: 2024-01-30 17:12:25 浏览: 83
以下是使用OpenCV进行图像对齐和图像相减的示例代码:
1. 图像对齐(基于特征)
```python
import cv2
# 读取两张图像
img1 = cv2.imread('image1.jpg')
img2 = cv2.imread('image2.jpg')
# 创建ORB特征检测器
orb = cv2.ORB_create()
# 在两张图像上检测特征点和描述符
kp1, des1 = orb.detectAndCompute(img1, None)
kp2, des2 = orb.detectAndCompute(img2, None)
# 创建BF匹配器
bf = cv2.BFMatcher(cv2.NORM_HAMMING, crossCheck=True)
# 使用BF匹配器进行特征点匹配
matches = bf.match(des1, des2)
# 根据匹配结果筛选出最佳匹配的特征点
matches = sorted(matches, key=lambda x: x.distance)
# 提取最佳匹配的特征点的坐标
pts1 = []
pts2 = []
for match in matches:
pts1.append(kp1[match.queryIdx].pt)
pts2.append(kp2[match.trainIdx].pt)
# 将特征点坐标转换为NumPy数组
pts1 = np.float32(pts1)
pts2 = np.float32(pts2)
# 使用RANSAC算法进行图像对齐
M, mask = cv2.findHomography(pts1, pts2, cv2.RANSAC)
# 对第二张图像进行透视变换,使其与第一张图像对齐
aligned_img2 = cv2.warpPerspective(img2, M, (img1.shape[1], img1.shape[0]))
# 显示对齐后的图像
cv2.imshow('Aligned Image 2', aligned_img2)
cv2.waitKey(0)
cv2.destroyAllWindows()
```
2. 图像相减
```python
import cv2
# 读取两张图像
img1 = cv2.imread('image1.jpg')
img2 = cv2.imread('image2.jpg')
# 将图像转换为灰度图像
gray_img1 = cv2.cvtColor(img1, cv2.COLOR_BGR2GRAY)
gray_img2 = cv2.cvtColor(img2, cv2.COLOR_BGR2GRAY)
# 计算两张灰度图像的差异
diff = cv2.absdiff(gray_img1, gray_img2)
# 显示差异图像
cv2.imshow('Difference Image', diff)
cv2.waitKey(0)
cv2.destroyAllWindows()
```
阅读全文