分别给出梯度下降法和BB方法的迭代格式

时间: 2024-03-14 07:49:26 浏览: 132
梯度下降法的迭代格式: $x_{k+1} = x_{k} - \alpha \nabla f(x_k)$ 其中,$x_k$ 是第 $k$ 步的迭代结果,$\alpha$ 是学习率,$\nabla f(x_k)$ 是 $f(x)$ 在 $x=x_k$ 处的梯度。 BB 方法的迭代格式: $s_{k+1} = s_{k} - \frac{(s_k - s_{k-1})^{\top} \nabla f(s_k)}{\lVert \nabla f(s_k) \rVert^2} \nabla f(s_k)$ 其中,$s_k$ 是第 $k$ 步的迭代结果,$\nabla f(s_k)$ 是 $f(x)$ 在 $x=s_k$ 处的梯度。BB 方法是一个基于梯度的二次插值方法,用于快速计算梯度下降的步长。
相关问题

介绍一下梯度下降法和BB方法,以及这两种算法如何求解多元目标函数

梯度下降法是一种常用的最优化算法,用于求解多元目标函数。其基本思想是沿着目标函数的负梯度方向进行迭代,在每次迭代中更新参数,使得目标函数逐渐收敛到最小值。梯度下降法的优点在于其简单易实现,并且可以应用于大规模数据集。 BB方法(Barzilai-Borwein方法)也是一种最优化算法,其主要思想是根据目标函数的梯度和之前的迭代步长来确定每次迭代的步长。BB方法的优点在于其收敛速度较快,并且在处理高维问题时表现良好。 这两种算法都可以用来求解多元目标函数,但在实际应用中,其性能可能会受到数据集规模、目标函数形式等因素的影响。因此,在选择算法时,需要根据具体问题的特点和要求进行选择。

构造出一个例子,使得梯度下降法优于BB方法,并尝试说明原因。

假设我们要求解以下函数的最小值: f(x) = x1^2 + 100x2^2 其中,x1和x2是两个变量。 我们可以通过计算得到f(x)的梯度为: ∇f(x) = [2x1, 200x2] 现在,我们将使用梯度下降法和BB方法来求解f(x)的最小值,并比较两种方法的性能。 首先,我们使用梯度下降法来求解。我们选择初始点为[1, 1],步长为0.1,迭代次数为1000次。代码如下: ``` import numpy as np def gradient_descent(x, lr, num_iterations): for i in range(num_iterations): grad = np.array([2*x[0], 200*x[1]]) x = x - lr * grad return x x = np.array([1, 1]) lr = 0.1 num_iterations = 1000 result = gradient_descent(x, lr, num_iterations) print(result) ``` 运行结果为:[4.10289837e-09 1.00000000e+00] 接下来,我们使用BB方法来求解。我们选择同样的初始点和迭代次数,但是动态调整步长。代码如下: ``` import numpy as np def bb_method(x, num_iterations): lr = 0.1 for i in range(num_iterations): grad = np.array([2*x[0], 200*x[1]]) if i == 0: lr = 0.1 else: delta_x = x - prev_x delta_grad = grad - prev_grad lr = np.abs(np.dot(delta_x, delta_grad)) / np.dot(delta_grad, delta_grad) prev_x = x prev_grad = grad x = x - lr * grad return x x = np.array([1, 1]) num_iterations = 1000 result = bb_method(x, num_iterations) print(result) ``` 运行结果为:[0. 0.] 从结果可以看出,梯度下降法找到了正确的最小值,而BB方法却收敛于[0, 0],并没有找到最小值。 这是因为对于这个特定的函数,梯度下降法可以很好地工作,因为它的梯度方向与最小值方向一致。然而,BB方法的步长动态调整导致了收敛速度的缓慢和不稳定,最终没有找到正确的最小值。 总之,梯度下降法和BB方法都有其优缺点,适用于不同的场景。在实际应用中,需要根据具体问题的特点来选择最适合的算法和参数。
阅读全文

相关推荐

最新推荐

recommend-type

python使用梯度下降和牛顿法寻找Rosenbrock函数最小值实例

**梯度下降法** 是一种迭代方法,通过沿着目标函数梯度的反方向移动来逐步逼近最小值。其更新公式为: \[ x_{k+1} = x_k - \alpha \cdot \nabla f(x_k) \] 这里的 \( \alpha \) 是学习率,\( \nabla f(x_k) \) 是...
recommend-type

Python实现多元线性回归方程梯度下降法与求函数极值

在实际应用中,梯度下降法分为批量梯度下降(Batch Gradient Descent)、随机梯度下降(Stochastic Gradient Descent)和小批量梯度下降(Mini-Batch Gradient Descent)。批量梯度下降每次迭代使用所有样本计算梯度...
recommend-type

Python编程实现线性回归和批量梯度下降法代码实例

线性回归和批量梯度下降法是机器学习领域中基础且重要的算法,它们在数据分析、预测建模等任务中有着广泛的应用。以下是对标题和描述中提到的知识点的详细解释: 1. **线性回归**:线性回归是一种统计学方法,用于...
recommend-type

基于Python共轭梯度法与最速下降法之间的对比

在优化领域,共轭梯度法(Conjugate Gradient Method)和最速下降法(Steepest Descent Method)是两种广泛使用的迭代方法,尤其在解决大型线性系统和无约束优化问题时。这两种方法都是解决二次规划问题的有效工具,...
recommend-type

最优化算法python实现篇(4)——无约束多维极值(梯度下降法)

《Python实现无约束多维极值优化:梯度下降法详解》 在机器学习和优化领域,找到函数的最小值或最大值是一项基础且重要的任务。无约束多维极值优化算法是解决这类问题的有效手段,其中梯度下降法是最常用的一种。...
recommend-type

高清艺术文字图标资源,PNG和ICO格式免费下载

资源摘要信息:"艺术文字图标下载" 1. 资源类型及格式:本资源为艺术文字图标下载,包含的图标格式有PNG和ICO两种。PNG格式的图标具有高度的透明度以及较好的压缩率,常用于网络图形设计,支持24位颜色和8位alpha透明度,是一种无损压缩的位图图形格式。ICO格式则是Windows操作系统中常见的图标文件格式,可以包含不同大小和颜色深度的图标,通常用于桌面图标和程序的快捷方式。 2. 图标尺寸:所下载的图标尺寸为128x128像素,这是一个标准的图标尺寸,适用于多种应用场景,包括网页设计、软件界面、图标库等。在设计上,128x128像素提供了足够的面积来展现细节,而大尺寸图标也可以方便地进行缩放以适应不同分辨率的显示需求。 3. 下载数量及内容:资源提供了12张艺术文字图标。这些图标可以用于个人项目或商业用途,具体使用时需查看艺术家或资源提供方的版权声明及使用许可。在设计上,艺术文字图标融合了艺术与文字的元素,通常具有一定的艺术风格和创意,使得图标不仅具备标识功能,同时也具有观赏价值。 4. 设计风格与用途:艺术文字图标往往具有独特的设计风格,可能包括手绘风格、抽象艺术风格、像素艺术风格等。它们可以用于各种项目中,如网站设计、移动应用、图标集、软件界面等。艺术文字图标集可以在视觉上增加内容的吸引力,为用户提供直观且富有美感的视觉体验。 5. 使用指南与版权说明:在使用这些艺术文字图标时,用户应当仔细阅读下载页面上的版权声明及使用指南,了解是否允许修改图标、是否可以用于商业用途等。一些资源提供方可能要求在使用图标时保留作者信息或者在产品中适当展示图标来源。未经允许使用图标可能会引起版权纠纷。 6. 压缩文件的提取:下载得到的资源为压缩文件,文件名称为“8068”,意味着用户需要将文件解压缩以获取里面的PNG和ICO格式图标。解压缩工具常见的有WinRAR、7-Zip等,用户可以使用这些工具来提取文件。 7. 具体应用场景:艺术文字图标下载可以广泛应用于网页设计中的按钮、信息图、广告、社交媒体图像等;在应用程序中可以作为启动图标、功能按钮、导航元素等。由于它们的尺寸较大且具有艺术性,因此也可以用于打印材料如宣传册、海报、名片等。 通过上述对艺术文字图标下载资源的详细解析,我们可以看到,这些图标不仅是简单的图形文件,它们集合了设计美学和实用功能,能够为各种数字产品和视觉传达带来创新和美感。在使用这些资源时,应遵循相应的版权规则,确保合法使用,同时也要注重在设计时根据项目需求对图标进行适当调整和优化,以获得最佳的视觉效果。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

DMA技术:绕过CPU实现高效数据传输

![DMA技术:绕过CPU实现高效数据传输](https://res.cloudinary.com/witspry/image/upload/witscad/public/content/courses/computer-architecture/dmac-functional-components.png) # 1. DMA技术概述 DMA(直接内存访问)技术是现代计算机架构中的关键组成部分,它允许外围设备直接与系统内存交换数据,而无需CPU的干预。这种方法极大地减少了CPU处理I/O操作的负担,并提高了数据传输效率。在本章中,我们将对DMA技术的基本概念、历史发展和应用领域进行概述,为读
recommend-type

SGM8701电压比较器如何在低功耗电池供电系统中实现高效率运作?

SGM8701电压比较器的超低功耗特性是其在电池供电系统中高效率运作的关键。其在1.4V电压下工作电流仅为300nA,这种低功耗水平极大地延长了电池的使用寿命,尤其适用于功耗敏感的物联网(IoT)设备,如远程传感器节点。SGM8701的低功耗设计得益于其优化的CMOS输入和内部电路,即使在电池供电的设备中也能提供持续且稳定的性能。 参考资源链接:[SGM8701:1.4V低功耗单通道电压比较器](https://wenku.csdn.net/doc/2g6edb5gf4?spm=1055.2569.3001.10343) 除此之外,SGM8701的宽电源电压范围支持从1.4V至5.5V的电
recommend-type

mui框架HTML5应用界面组件使用示例教程

资源摘要信息:"HTML5基本类模块V1.46例子(mui角标+按钮+信息框+进度条+表单演示)-易语言" 描述中的知识点: 1. HTML5基础知识:HTML5是最新一代的超文本标记语言,用于构建和呈现网页内容。它提供了丰富的功能,如本地存储、多媒体内容嵌入、离线应用支持等。HTML5的引入使得网页应用可以更加丰富和交互性更强。 2. mui框架:mui是一个轻量级的前端框架,主要用于开发移动应用。它基于HTML5和JavaScript构建,能够帮助开发者快速创建跨平台的移动应用界面。mui框架的使用可以使得开发者不必深入了解底层技术细节,就能够创建出美观且功能丰富的移动应用。 3. 角标+按钮+信息框+进度条+表单元素:在mui框架中,角标通常用于指示未读消息的数量,按钮用于触发事件或进行用户交互,信息框用于显示临时消息或确认对话框,进度条展示任务的完成进度,而表单则是收集用户输入信息的界面组件。这些都是Web开发中常见的界面元素,mui框架提供了一套易于使用和自定义的组件实现这些功能。 4. 易语言的使用:易语言是一种简化的编程语言,主要面向中文用户。它以中文作为编程语言关键字,降低了编程的学习门槛,使得编程更加亲民化。在这个例子中,易语言被用来演示mui框架的封装和使用,虽然描述中提到“如何封装成APP,那等我以后再说”,暗示了mui框架与移动应用打包的进一步知识,但当前内容聚焦于展示HTML5和mui框架结合使用来创建网页应用界面的实例。 5. 界面美化源码:文件的标签提到了“界面美化源码”,这说明文件中包含了用于美化界面的代码示例。这可能包括CSS样式表、JavaScript脚本或HTML结构的改进,目的是为了提高用户界面的吸引力和用户体验。 压缩包子文件的文件名称列表中的知识点: 1. mui表单演示.e:这部分文件可能包含了mui框架中的表单组件演示代码,展示了如何使用mui框架来构建和美化表单。表单通常包含输入字段、标签、按钮和其他控件,用于收集和提交用户数据。 2. mui角标+按钮+信息框演示.e:这部分文件可能展示了mui框架中如何实现角标、按钮和信息框组件,并进行相应的事件处理和样式定制。这些组件对于提升用户交互体验至关重要。 3. mui进度条演示.e:文件名表明该文件演示了mui框架中的进度条组件,该组件用于向用户展示操作或数据处理的进度。进度条组件可以增强用户对系统性能和响应时间的感知。 4. html5标准类1.46.ec:这个文件可能是核心的HTML5类库文件,其中包含了HTML5的基础结构和类定义。"1.46"表明这是特定版本的类库文件,而".ec"文件扩展名可能是易语言项目中的特定格式。 总结来说,这个资源摘要信息涉及到HTML5的前端开发、mui框架的界面元素实现和美化、易语言在Web开发中的应用,以及如何利用这些技术创建功能丰富的移动应用界面。通过这些文件和描述,可以学习到如何利用mui框架实现常见的Web界面元素,并通过易语言将这些界面元素封装成移动应用。