分别给出梯度下降法和BB方法的迭代格式

时间: 2024-03-14 19:49:26 浏览: 22
梯度下降法的迭代格式: $x_{k+1} = x_{k} - \alpha \nabla f(x_k)$ 其中,$x_k$ 是第 $k$ 步的迭代结果,$\alpha$ 是学习率,$\nabla f(x_k)$ 是 $f(x)$ 在 $x=x_k$ 处的梯度。 BB 方法的迭代格式: $s_{k+1} = s_{k} - \frac{(s_k - s_{k-1})^{\top} \nabla f(s_k)}{\lVert \nabla f(s_k) \rVert^2} \nabla f(s_k)$ 其中,$s_k$ 是第 $k$ 步的迭代结果,$\nabla f(s_k)$ 是 $f(x)$ 在 $x=s_k$ 处的梯度。BB 方法是一个基于梯度的二次插值方法,用于快速计算梯度下降的步长。
相关问题

介绍一下梯度下降法和BB方法,以及这两种算法如何求解多元目标函数

梯度下降法是一种常用的最优化算法,用于求解多元目标函数。其基本思想是沿着目标函数的负梯度方向进行迭代,在每次迭代中更新参数,使得目标函数逐渐收敛到最小值。梯度下降法的优点在于其简单易实现,并且可以应用于大规模数据集。 BB方法(Barzilai-Borwein方法)也是一种最优化算法,其主要思想是根据目标函数的梯度和之前的迭代步长来确定每次迭代的步长。BB方法的优点在于其收敛速度较快,并且在处理高维问题时表现良好。 这两种算法都可以用来求解多元目标函数,但在实际应用中,其性能可能会受到数据集规模、目标函数形式等因素的影响。因此,在选择算法时,需要根据具体问题的特点和要求进行选择。

构造出一个例子,使得梯度下降法优于BB方法,并尝试说明原因。

假设我们要求解以下函数的最小值: f(x) = x1^2 + 100x2^2 其中,x1和x2是两个变量。 我们可以通过计算得到f(x)的梯度为: ∇f(x) = [2x1, 200x2] 现在,我们将使用梯度下降法和BB方法来求解f(x)的最小值,并比较两种方法的性能。 首先,我们使用梯度下降法来求解。我们选择初始点为[1, 1],步长为0.1,迭代次数为1000次。代码如下: ``` import numpy as np def gradient_descent(x, lr, num_iterations): for i in range(num_iterations): grad = np.array([2*x[0], 200*x[1]]) x = x - lr * grad return x x = np.array([1, 1]) lr = 0.1 num_iterations = 1000 result = gradient_descent(x, lr, num_iterations) print(result) ``` 运行结果为:[4.10289837e-09 1.00000000e+00] 接下来,我们使用BB方法来求解。我们选择同样的初始点和迭代次数,但是动态调整步长。代码如下: ``` import numpy as np def bb_method(x, num_iterations): lr = 0.1 for i in range(num_iterations): grad = np.array([2*x[0], 200*x[1]]) if i == 0: lr = 0.1 else: delta_x = x - prev_x delta_grad = grad - prev_grad lr = np.abs(np.dot(delta_x, delta_grad)) / np.dot(delta_grad, delta_grad) prev_x = x prev_grad = grad x = x - lr * grad return x x = np.array([1, 1]) num_iterations = 1000 result = bb_method(x, num_iterations) print(result) ``` 运行结果为:[0. 0.] 从结果可以看出,梯度下降法找到了正确的最小值,而BB方法却收敛于[0, 0],并没有找到最小值。 这是因为对于这个特定的函数,梯度下降法可以很好地工作,因为它的梯度方向与最小值方向一致。然而,BB方法的步长动态调整导致了收敛速度的缓慢和不稳定,最终没有找到正确的最小值。 总之,梯度下降法和BB方法都有其优缺点,适用于不同的场景。在实际应用中,需要根据具体问题的特点来选择最适合的算法和参数。

相关推荐

最新推荐

recommend-type

python使用梯度下降和牛顿法寻找Rosenbrock函数最小值实例

主要介绍了python使用梯度下降和牛顿法寻找Rosenbrock函数最小值实例,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
recommend-type

Python实现多元线性回归方程梯度下降法与求函数极值

梯度下降法 梯度下降法的基本思想可以类比为一个下山的过程。 假设这样一个场景:一个人被困在山上,需要从山上下来(找到山的最低点,也就是山谷)。但此时山上的浓雾很大,导致可视度很低;因此,下山的路径就无法...
recommend-type

Python编程实现线性回归和批量梯度下降法代码实例

主要介绍了Python编程实现线性回归和批量梯度下降法代码实例,具有一定借鉴价值,需要的朋友可以参考下
recommend-type

基于Python共轭梯度法与最速下降法之间的对比

主要介绍了基于Python共轭梯度法与最速下降法之间的对比,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
recommend-type

最优化算法python实现篇(4)——无约束多维极值(梯度下降法)

最优化算法python实现篇(4)——无约束多维极值(梯度下降法)摘要算法简介注意事项算法适用性python实现实例运行结果算法过程可视化 摘要 本文介绍了多维无约束极值优化算法中的梯度下降法,通过python进行实现,...
recommend-type

保险服务门店新年工作计划PPT.pptx

在保险服务门店新年工作计划PPT中,包含了五个核心模块:市场调研与目标设定、服务策略制定、营销与推广策略、门店形象与环境优化以及服务质量监控与提升。以下是每个模块的关键知识点: 1. **市场调研与目标设定** - **了解市场**:通过收集和分析当地保险市场的数据,包括产品种类、价格、市场需求趋势等,以便准确把握市场动态。 - **竞争对手分析**:研究竞争对手的产品特性、优势和劣势,以及市场份额,以进行精准定位和制定有针对性的竞争策略。 - **目标客户群体定义**:根据市场需求和竞争情况,明确服务对象,设定明确的服务目标,如销售额和客户满意度指标。 2. **服务策略制定** - **服务计划制定**:基于市场需求定制服务内容,如咨询、报价、理赔协助等,并规划服务时间表,保证服务流程的有序执行。 - **员工素质提升**:通过专业培训提升员工业务能力和服务意识,优化服务流程,提高服务效率。 - **服务环节管理**:细化服务流程,明确责任,确保服务质量和效率,强化各环节之间的衔接。 3. **营销与推广策略** - **节日营销活动**:根据节庆制定吸引人的活动方案,如新春送福、夏日促销,增加销售机会。 - **会员营销**:针对会员客户实施积分兑换、优惠券等策略,增强客户忠诚度。 4. **门店形象与环境优化** - **环境设计**:优化门店外观和内部布局,营造舒适、专业的服务氛围。 - **客户服务便利性**:简化服务手续和所需材料,提升客户的体验感。 5. **服务质量监控与提升** - **定期评估**:持续监控服务质量,发现问题后及时调整和改进,确保服务质量的持续提升。 - **流程改进**:根据评估结果不断优化服务流程,减少等待时间,提高客户满意度。 这份PPT旨在帮助保险服务门店在新的一年里制定出有针对性的工作计划,通过科学的策略和细致的执行,实现业绩增长和客户满意度的双重提升。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

MATLAB图像去噪最佳实践总结:经验分享与实用建议,提升去噪效果

![MATLAB图像去噪最佳实践总结:经验分享与实用建议,提升去噪效果](https://img-blog.csdnimg.cn/d3bd9b393741416db31ac80314e6292a.png) # 1. 图像去噪基础 图像去噪旨在从图像中去除噪声,提升图像质量。图像噪声通常由传感器、传输或处理过程中的干扰引起。了解图像噪声的类型和特性对于选择合适的去噪算法至关重要。 **1.1 噪声类型** * **高斯噪声:**具有正态分布的加性噪声,通常由传感器热噪声引起。 * **椒盐噪声:**随机分布的孤立像素,值要么为最大值(白色噪声),要么为最小值(黑色噪声)。 * **脉冲噪声
recommend-type

InputStream in = Resources.getResourceAsStream

`Resources.getResourceAsStream`是MyBatis框架中的一个方法,用于获取资源文件的输入流。它通常用于加载MyBatis配置文件或映射文件。 以下是一个示例代码,演示如何使用`Resources.getResourceAsStream`方法获取资源文件的输入流: ```java import org.apache.ibatis.io.Resources; import java.io.InputStream; public class Example { public static void main(String[] args) {
recommend-type

车辆安全工作计划PPT.pptx

"车辆安全工作计划PPT.pptx" 这篇文档主要围绕车辆安全工作计划展开,涵盖了多个关键领域,旨在提升车辆安全性能,降低交通事故发生率,以及加强驾驶员的安全教育和交通设施的完善。 首先,工作目标是确保车辆结构安全。这涉及到车辆设计和材料选择,以增强车辆的结构强度和耐久性,从而减少因结构问题导致的损坏和事故。同时,通过采用先进的电子控制和安全技术,提升车辆的主动和被动安全性能,例如防抱死刹车系统(ABS)、电子稳定程序(ESP)等,可以显著提高行驶安全性。 其次,工作内容强调了建立和完善车辆安全管理体系。这包括制定车辆安全管理制度,明确各级安全管理责任,以及确立安全管理的指导思想和基本原则。同时,需要建立安全管理体系,涵盖安全组织、安全制度、安全培训和安全检查等,确保安全管理工作的系统性和规范性。 再者,加强驾驶员安全培训是另一项重要任务。通过培训提高驾驶员的安全意识和技能水平,使他们更加重视安全行车,了解并遵守交通规则。培训内容不仅包括交通法规,还涉及安全驾驶技能和应急处置能力,以应对可能发生的突发情况。 此外,文档还提到了严格遵守交通规则的重要性。这需要通过宣传和执法来强化,以降低由于违反交通规则造成的交通事故。同时,优化道路交通设施,如改善交通标志、标线和信号灯,可以提高道路通行效率,进一步增强道路安全性。 在实际操作层面,工作计划中提到了车辆定期检查的必要性,包括对刹车、转向、悬挂、灯光、燃油和电器系统的检查,以及根据车辆使用情况制定检查计划。每次检查后应记录问题并及时处理,以确保车辆始终处于良好状态。 最后,建立车辆安全信息管理系统也是关键。通过对车辆事故和故障情况进行记录和分析,可以为安全管理提供数据支持,以便及时发现问题,预防潜在风险,并对事故进行有效处理和责任追究。 这份车辆安全工作计划全面覆盖了从车辆本身到驾驶员行为,再到道路环境的诸多方面,旨在构建一个全方位、多层次的车辆安全管理体系,以降低交通事故风险,保障道路交通安全。