; int_m(1)=0; for i=1:length(t)-1 % integral of m int_m(i+1)=int_m(i)+m(i)*ts; echo off ; end

时间: 2024-06-05 18:13:23 浏览: 6
这是一个 MATLAB 的代码段,用于计算一个数组 m 的离散积分,并将结果存储在另一个数组 int_m 中。 具体来说,代码中的 for 循环遍历数组 t 中除最后一个元素之外的所有元素。对于每个元素 i,代码将 m(i) 乘以时间步长 ts,并将结果累加到 int_m(i+1) 中。最后得到的 int_m 数组中,每个元素表示 m 数组从起点到当前位置的积分值。 请注意,代码中的第一行将 int_m(1) 设为 0,这是因为积分的起点是 0。
相关问题

public static String encode(byte[] binaryData) { if (binaryData == null) { return null; } int lengthDataBits = binaryData.length * EIGHTBIT; if (lengthDataBits == 0) { return ""; } int fewerThan24bits = lengthDataBits % TWENTYFOURBITGROUP; int numberTriplets = lengthDataBits / TWENTYFOURBITGROUP; int numberQuartet = fewerThan24bits != 0 ? numberTriplets + 1 : numberTriplets; char[] encodedData = null; encodedData = new char[numberQuartet * 4]; byte k = 0, l = 0, b1 = 0, b2 = 0, b3 = 0; int encodedIndex = 0; int dataIndex = 0; for (int i = 0; i < numberTriplets; i++) { b1 = binaryData[dataIndex++]; b2 = binaryData[dataIndex++]; b3 = binaryData[dataIndex++]; l = (byte) (b2 & 0x0f); k = (byte) (b1 & 0x03); byte val1 = ((b1 & SIGN) == 0) ? (byte) (b1 >> 2) : (byte) ((b1) >> 2 ^ 0xc0); byte val2 = ((b2 & SIGN) == 0) ? (byte) (b2 >> 4) : (byte) ((b2) >> 4 ^ 0xf0); byte val3 = ((b3 & SIGN) == 0) ? (byte) (b3 >> 6) : (byte) ((b3) >> 6 ^ 0xfc); encodedData[encodedIndex++] = lookUpBase64Alphabet[val1]; encodedData[encodedIndex++] = lookUpBase64Alphabet[val2 | (k << 4)]; encodedData[encodedIndex++] = lookUpBase64Alphabet[(l << 2) | val3]; encodedData[encodedIndex++] = lookUpBase64Alphabet[b3 & 0x3f]; } // form integral number of 6-bit groups if (fewerThan24bits == EIGHTBIT) { b1 = binaryData[dataIndex]; k = (byte) (b1 & 0x03); byte val1 = ((b1 & SIGN) == 0) ? (byte) (b1 >> 2) : (byte) ((b1) >> 2 ^ 0xc0); encodedData[encodedIndex++] = lookUpBase64Alphabet[val1]; encodedData[encodedIndex++] = lookUpBase64Alphabet[k << 4]; encodedData[encodedIndex++] = PAD; encodedData[encodedIndex++] = PAD; } else if (fewerThan24bits == SIXTEENBIT) { b1 = binaryData[dataIndex]; b2 = binaryData[dataIndex + 1]; l = (byte) (b2 & 0x0f); k = (byte) (b1 & 0x03); byte val1 = ((b1 & SIGN) == 0) ? (byte) (b1 >> 2) : (byte) ((b1) >> 2 ^ 0xc0); byte val2 = ((b2 & SIGN) == 0) ? (byte) (b2 >> 4) : (byte) ((b2) >> 4 ^ 0xf0); encodedData[encodedIndex++] = lookUpBase64Alphabet[val1]; encodedData[encodedIndex++] = lookUpBase64Alphabet[val2 | (k << 4)]; encodedData[encodedIndex++] = lookUpBase64Alphabet[l << 2]; encodedData[encodedIndex++] = PAD; } return new String(encodedData); }重构该方法,将其认知复杂度从18降低到允许的15。

该方法是一个将二进制数据转换为Base64编码的方法。为了将其认知复杂度从18降低到允许的15,可以考虑以下几个方面: 1. 提取公共方法:将一些重复的代码提取出来,封装成一个公共的方法,使得原方法中的代码量减少。 2. 优化变量名:将一些变量名改得更加易懂,减少代码的理解难度。 3. 简化表达式:将一些复杂的表达式简化,使得代码更加易读。 4. 减少条件分支:尽量减少条件分支的使用,可以使用位运算等技巧来实现。 下面是重构后的代码: public static String encode(byte[] binaryData) { if (binaryData == null) { return null; } int lengthDataBits = binaryData.length * 8; if (lengthDataBits == 0) { return ""; } int fewerThan24bits = lengthDataBits % 24; int numberTriplets = lengthDataBits / 24; int numberQuartet = fewerThan24bits != 0 ? numberTriplets + 1 : numberTriplets; char[] encodedData = new char[numberQuartet * 4]; byte val1, val2, val3, k, l, b1, b2, b3; int dataIndex = 0, encodedIndex = 0; for (int i = 0; i < numberTriplets; i++) { b1 = binaryData[dataIndex++]; b2 = binaryData[dataIndex++]; b3 = binaryData[dataIndex++]; l = (byte) (b2 & 0x0f); k = (byte) (b1 & 0x03); val1 = (byte) ((b1 >>> 2) & 0x3f); val2 = (byte) (((b1 << 4) & 0x30) | ((b2 >>> 4) & 0x0f)); val3 = (byte) (((b2 << 2) & 0x3c) | ((b3 >>> 6) & 0x03)); encodedData[encodedIndex++] = lookUpBase64Alphabet[val1]; encodedData[encodedIndex++] = lookUpBase64Alphabet[val2]; encodedData[encodedIndex++] = lookUpBase64Alphabet[val3]; encodedData[encodedIndex++] = lookUpBase64Alphabet[b3 & 0x3f]; } if (fewerThan24bits == 8) { b1 = binaryData[dataIndex]; k = (byte) (b1 & 0x03); val1 = (byte) ((b1 >>> 2) & 0x3f); val2 = (byte) (k << 4); encodedData[encodedIndex++] = lookUpBase64Alphabet[val1]; encodedData[encodedIndex++] = lookUpBase64Alphabet[val2]; encodedData[encodedIndex++] = '='; encodedData[encodedIndex++] = '='; } else if (fewerThan24bits == 16) { b1 = binaryData[dataIndex]; b2 = binaryData[dataIndex + 1]; l = (byte) (b2 & 0x0f); k = (byte) (b1 & 0x03); val1 = (byte) ((b1 >>> 2) & 0x3f); val2 = (byte) (((b1 << 4) & 0x30) | ((b2 >>> 4) & 0x0f)); val3 = (byte) (l << 2); encodedData[encodedIndex++] = lookUpBase64Alphabet[val1]; encodedData[encodedIndex++] = lookUpBase64Alphabet[val2]; encodedData[encodedIndex++] = lookUpBase64Alphabet[val3]; encodedData[encodedIndex++] = '='; } return new String(encodedData); }

q=p^2sin(w)^2+63726.4585+324.182p; g=(p*sin(w)+sqrt(q))/cos(w)^2; f=@(p)g; fun=int(f,w,-1,1);求fun的最小值和最小值对应的点(用matlab编写)用二分查找法编写

以下是用 Matlab 编写的代码: ```matlab p = 0:0.001:10; % 定义 p 的范围 q = p.^2 .* sin(63726.4585 .* 324.182 .* p).^2; % 计算 q 的值 g = (p .* sin(63726.4585 .* 324.182 .* p) .* sqrt(q)) ./ cos(63726.4585 .* 324.182 .* p).^2; % 计算 g 的值 f = @(p) g; % 定义函数 f fun = zeros(size(p)); % 初始化 fun 的值 for i = 1:length(p) fun(i) = integral(f, -1, 1, 'ArrayValued', true); % 计算 fun 的值 end [min_fun, min_index] = min(fun); % 找到 fun 的最小值和对应的下标 min_p = p(min_index); % 最小值对应的 p 的值 ``` 其中,`integral` 函数用于计算定积分,`min` 函数用于找到最小值及其下标。接下来,使用二分查找法来寻找 `fun` 的最小值。 ```matlab left = 1; % 定义左边界 right = length(p); % 定义右边界 while left < right mid = floor((left + right) / 2); % 找到中间位置 if fun(mid) < fun(mid+1) right = mid; % 最小值在左半边 else left = mid + 1; % 最小值在右半边 end end min_fun = fun(left); % 找到最小值 min_p = p(left); % 最小值对应的 p 的值 ``` 最终,`min_fun` 即为 `fun` 的最小值,`min_p` 即为最小值对应的 `p` 的值。

相关推荐

最新推荐

recommend-type

Google C++ Style Guide(Google C++编程规范)高清PDF

Length Arrays and alloca() Friends Exceptions Run-Time Type Information (RTTI) Casting Streams Preincrement and Predecrement Use of const Integer Types 64-bit Portability Preprocessor Macros 0 and ...
recommend-type

源代码-QQ价值评估程序ASP爬虫 [缓存技术版].zip

源代码-QQ价值评估程序ASP爬虫 [缓存技术版].zip
recommend-type

2007-2021年 乡村旅游指标-最美乡村数、旅游示范县数、旅行社数、景区数、农家乐数.zip

乡村旅游也是促进乡村经济发展的有效途径。通过发展乡村旅游,可以带动乡村相关产业的发展,提高乡村居民的收入,促进乡村的经济发展和社会进步。此外,乡村旅游还能促进城乡交流,推动城乡统筹发展。 数据整理各个省地区乡村旅游相关指标包括从业人数、美丽乡村数量、乡村旅游示范县数量,传统村落数量、景区数量、旅游收入,旅客周转量数据​。 数据名称:乡村旅游指标-最美乡村数、旅游示范县数、旅行社数、景区数、农家乐数 城市、年份、星级饭店数/家、A 级旅游景区数量/个、旅行社数/家、旅游接待总人数/万人、旅游总收入/亿元、旅客周转量、GDP、当地从业人员、森林覆盖率、生活垃圾无害化处理率、PM2.5浓度、中国美丽休闲乡村数量、休闲农业与乡村旅游示范县(点)、传统村落数量
recommend-type

C语言入门教程及100例

c语言基础学习及实用基础案例,帮助掌握编码基础
recommend-type

elasticsearch下载配置及案例&项目源码

elasticsearch下载配置及案例&项目源码
recommend-type

数据结构课程设计:模块化比较多种排序算法

本篇文档是关于数据结构课程设计中的一个项目,名为“排序算法比较”。学生针对专业班级的课程作业,选择对不同排序算法进行比较和实现。以下是主要内容的详细解析: 1. **设计题目**:该课程设计的核心任务是研究和实现几种常见的排序算法,如直接插入排序和冒泡排序,并通过模块化编程的方法来组织代码,提高代码的可读性和复用性。 2. **运行环境**:学生在Windows操作系统下,利用Microsoft Visual C++ 6.0开发环境进行编程。这表明他们将利用C语言进行算法设计,并且这个环境支持高效的性能测试和调试。 3. **算法设计思想**:采用模块化编程策略,将排序算法拆分为独立的子程序,比如`direct`和`bubble_sort`,分别处理直接插入排序和冒泡排序。每个子程序根据特定的数据结构和算法逻辑进行实现。整体上,算法设计强调的是功能的分块和预想功能的顺序组合。 4. **流程图**:文档包含流程图,可能展示了程序设计的步骤、数据流以及各部分之间的交互,有助于理解算法执行的逻辑路径。 5. **算法设计分析**:模块化设计使得程序结构清晰,每个子程序仅在被调用时运行,节省了系统资源,提高了效率。此外,这种设计方法增强了程序的扩展性,方便后续的修改和维护。 6. **源代码示例**:提供了两个排序函数的代码片段,一个是`direct`函数实现直接插入排序,另一个是`bubble_sort`函数实现冒泡排序。这些函数的实现展示了如何根据算法原理操作数组元素,如交换元素位置或寻找合适的位置插入。 总结来说,这个课程设计要求学生实际应用数据结构知识,掌握并实现两种基础排序算法,同时通过模块化编程的方式展示算法的实现过程,提升他们的编程技巧和算法理解能力。通过这种方式,学生可以深入理解排序算法的工作原理,同时学会如何优化程序结构,提高程序的性能和可维护性。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

STM32单片机小车智能巡逻车设计与实现:打造智能巡逻车,开启小车新时代

![stm32单片机小车](https://img-blog.csdnimg.cn/direct/c16e9788716a4704af8ec37f1276c4dc.png) # 1. STM32单片机简介及基础** STM32单片机是意法半导体公司推出的基于ARM Cortex-M内核的高性能微控制器系列。它具有低功耗、高性能、丰富的外设资源等特点,广泛应用于工业控制、物联网、汽车电子等领域。 STM32单片机的基础架构包括CPU内核、存储器、外设接口和时钟系统。其中,CPU内核负责执行指令,存储器用于存储程序和数据,外设接口提供与外部设备的连接,时钟系统为单片机提供稳定的时钟信号。 S
recommend-type

devc++如何监视

Dev-C++ 是一个基于 Mingw-w64 的免费 C++ 编程环境,主要用于 Windows 平台。如果你想监视程序的运行情况,比如查看内存使用、CPU 使用率、日志输出等,Dev-C++ 本身并不直接提供监视工具,但它可以在编写代码时结合第三方工具来实现。 1. **Task Manager**:Windows 自带的任务管理器可以用来实时监控进程资源使用,包括 CPU 占用、内存使用等。只需打开任务管理器(Ctrl+Shift+Esc 或右键点击任务栏),然后找到你的程序即可。 2. **Visual Studio** 或 **Code::Blocks**:如果你习惯使用更专业的
recommend-type

哈夫曼树实现文件压缩解压程序分析

"该文档是关于数据结构课程设计的一个项目分析,主要关注使用哈夫曼树实现文件的压缩和解压缩。项目旨在开发一个实用的压缩程序系统,包含两个可执行文件,分别适用于DOS和Windows操作系统。设计目标中强调了软件的性能特点,如高效压缩、二级缓冲技术、大文件支持以及友好的用户界面。此外,文档还概述了程序的主要函数及其功能,包括哈夫曼编码、索引编码和解码等关键操作。" 在数据结构课程设计中,哈夫曼树是一种重要的数据结构,常用于数据压缩。哈夫曼树,也称为最优二叉树,是一种带权重的二叉树,它的构造原则是:树中任一非叶节点的权值等于其左子树和右子树的权值之和,且所有叶节点都在同一层上。在这个文件压缩程序中,哈夫曼树被用来生成针对文件中字符的最优编码,以达到高效的压缩效果。 1. 压缩过程: - 首先,程序统计文件中每个字符出现的频率,构建哈夫曼树。频率高的字符对应较短的编码,反之则对应较长的编码。这样可以使得频繁出现的字符用较少的位来表示,从而降低存储空间。 - 接着,使用哈夫曼编码将原始文件中的字符转换为对应的编码序列,完成压缩。 2. 解压缩过程: - 在解压缩时,程序需要重建哈夫曼树,并根据编码序列还原出原来的字符序列。这涉及到索引编码和解码,通过递归函数如`indexSearch`和`makeIndex`实现。 - 为了提高效率,程序采用了二级缓冲技术,它能减少磁盘I/O次数,提高读写速度。 3. 软件架构: - 项目包含了两个可执行文件,`DosHfm.exe`适用于DOS系统,体积小巧,运行速度快;而`WinHfm.exe`则为Windows环境设计,提供了更友好的图形界面。 - 程序支持最大4GB的文件压缩,这是Fat32文件系统的限制。 4. 性能特点: - 除了基本的压缩和解压缩功能外,软件还提供了一些额外的特性,如显示压缩进度、文件一致性检查等。 - 哈夫曼编码的使用提高了压缩率,而二级缓冲技术使压缩速度提升了75%以上。 这个项目不仅展示了数据结构在实际问题中的应用,还体现了软件工程的实践,包括需求分析、概要设计以及关键算法的实现。通过这样的课程设计,学生可以深入理解数据结构和算法的重要性,并掌握实际编程技能。