qt中dijkstra算法计算最短路径
时间: 2023-11-15 07:52:29 浏览: 64
基于dijkstra算法的最短路径的求解
在Qt中实现Dijkstra算法可以分为以下几个步骤:
1. 定义节点类
```c++
class Node {
public:
QString name; // 节点名称
QVector<QPair<Node*, int>> neighbors; // 相邻节点及其边权值
int distance = INT_MAX; // 起点到该节点的距离
bool visited = false; // 是否已访问
Node(const QString& name) : name(name) {}
};
```
2. 定义图类
```c++
class Graph {
public:
QVector<Node*> nodes; // 所有节点
void addNode(Node* node) {
nodes.append(node);
}
void addEdge(Node* from, Node* to, int weight) {
from->neighbors.append(qMakePair(to, weight));
to->neighbors.append(qMakePair(from, weight)); // 无向图
}
};
```
3. 实现Dijkstra算法
```c++
void dijkstra(Graph* graph, Node* start) {
// 初始化
for (auto node : graph->nodes) {
node->distance = INT_MAX;
node->visited = false;
}
start->distance = 0;
// 运行Dijkstra算法
QSet<Node*> unvisitedNodes;
unvisitedNodes.insert(graph->nodes.begin(), graph->nodes.end());
while (!unvisitedNodes.isEmpty()) {
// 从未访问节点中选取距离最小的节点
Node* minNode = nullptr;
for (auto node : unvisitedNodes) {
if (!minNode || node->distance < minNode->distance) {
minNode = node;
}
}
unvisitedNodes.remove(minNode);
minNode->visited = true;
// 更新相邻节点的距离
for (auto neighbor : minNode->neighbors) {
if (!neighbor.first->visited) {
int dist = minNode->distance + neighbor.second;
if (dist < neighbor.first->distance) {
neighbor.first->distance = dist;
}
}
}
}
}
```
4. 调用Dijkstra算法
```c++
Graph* graph = new Graph();
Node* n1 = new Node("A");
Node* n2 = new Node("B");
Node* n3 = new Node("C");
Node* n4 = new Node("D");
graph->addNode(n1);
graph->addNode(n2);
graph->addNode(n3);
graph->addNode(n4);
graph->addEdge(n1, n2, 1);
graph->addEdge(n1, n3, 3);
graph->addEdge(n2, n3, 1);
graph->addEdge(n2, n4, 4);
graph->addEdge(n3, n4, 1);
dijkstra(graph, n1);
qDebug() << n1->distance << n2->distance << n3->distance << n4->distance;
```
以上代码实现了一个简单的无向图,并调用Dijkstra算法计算从节点A到其他节点的最短距离。
阅读全文