r_vector.matrix()解释
时间: 2024-05-24 12:13:05 浏览: 114
r_vector.matrix()是R语言中的一个函数,它将一个向量转换为一个矩阵。该函数的使用格式为:
r_vector.matrix(x, nrow = NULL, ncol = NULL, byrow = FALSE)
参数说明:
- x:要转换为矩阵的向量。
- nrow:矩阵的行数。
- ncol:矩阵的列数。
- byrow:逻辑值,表示矩阵的填充方式。默认为FALSE,按列填充;若为TRUE,则按行填充。
如果nrow和ncol都是NULL,则矩阵的行数和列数将根据向量的长度自动确定。如果只指定了其中一个参数,则另一个参数将自动计算。
示例:
# 创建一个向量
my_vector <- c(1, 2, 3, 4, 5, 6)
# 将向量转换为矩阵
my_matrix <- r_vector.matrix(my_vector, nrow = 2)
# 输出矩阵
my_matrix
# [,1] [,2] [,3]
# [1,] 1 3 5
# [2,] 2 4 6
在上面的示例中,将一个长度为6的向量转换为一个2行3列的矩阵。由于没有指定填充方式,默认按列填充。结果显示一个2x3的矩阵。
相关问题
from sklearn.naive_bayes import BernoulliNB,MultinomialNB from sklearn.feature_extraction.text import CountVectorizer from sklearn.model_selection import train_test_split import pandas as pd path = 'E:/Python_file/zuoye/SMSSpamCollection.txt' Cnames=['labels','messages'] data = pd.read_csv(path,sep='\t', header=None, names=Cnames) #读取数据集,分隔符是\t data=data.replace({'ham':0,'spam':1}) #替换标签值 print('数据集展示:') print(data) print('\n----------------------------------\n') X=data['messages'] y=data['labels'] x_train,x_test,y_train,y_test=train_test_split(X,y,train_size=0.8,random_state=123) vector_nomial=CountVectorizer() #实现词袋模型 vector_bernou=CountVectorizer() #多项式模型分类垃圾短信 train_matrix=vector_nomial.fit_transform(x_train) test_matrix=vector_nomial.transform(x_test) polynomial=MultinomialNB() clm_nomial=polynomial.fit(train_matrix,y_train) result_nomial=clm_nomial.predict(test_matrix) #伯努利模型分类垃圾短信 train_matrix=vector_bernou.fit_transform(x_train) test_matrix=vector_bernou.transform(x_test) Bernoulli=BernoulliNB() clm_bernoulli=Bernoulli.fit(train_matrix,y_train) result_bernou=clm_bernoulli.predict(test_matrix) print('多项式模型的预测结果,类型,长度:') print(result_nomial,type(result_nomial),result_nomial.shape) print('多项式模型的前一百个预测结果:') print(result_nomial[0:100]) print('多项式模型模型R²评分:'+ str(clm_nomial.score(test_matrix,y_test))) print('\n----------------------------------\n') print('伯努利模型的预测结果,类型,长度:') print(result_bernou,type(result_bernou),result_bernou.shape) print('伯努利模型的前一百个预测结果:') print(result_bernou[0:100]) print('伯努利模型R²评分:'+ str(clm_bernoulli.score(test_matrix,y_test)))
这段代码是一个简单的垃圾短信分类器的实现。具体来说,它使用了朴素贝叶斯算法中的多项式模型和伯努利模型来分类短信为垃圾短信或非垃圾短信。以下是代码的详细解释:
1. 导入必要的库和模块:
```python
from sklearn.naive_bayes import BernoulliNB, MultinomialNB
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.model_selection import train_test_split
import pandas as pd
```
2. 读取数据集,并将标签值替换为0或1:
```python
path = 'E:/Python_file/zuoye/SMSSpamCollection.txt'
Cnames=['labels','messages']
data = pd.read_csv(path, sep='\t', header=None, names=Cnames)
data = data.replace({'ham':0, 'spam':1})
```
3. 划分训练集和测试集:
```python
X = data['messages']
y = data['labels']
x_train, x_test, y_train, y_test = train_test_split(X, y, train_size=0.8, random_state=123)
```
4. 实现词袋模型和多项式模型:
```python
vector_nomial = CountVectorizer() # 实现词袋模型
vector_bernou = CountVectorizer() # 多项式模型
```
5. 使用多项式模型分类垃圾短信:
```python
train_matrix = vector_nomial.fit_transform(x_train)
test_matrix = vector_nomial.transform(x_test)
polynomial = MultinomialNB()
clm_nomial = polynomial.fit(train_matrix, y_train)
result_nomial = clm_nomial.predict(test_matrix)
```
6. 使用伯努利模型分类垃圾短信:
```python
train_matrix = vector_bernou.fit_transform(x_train)
test_matrix = vector_bernou.transform(x_test)
Bernoulli = BernoulliNB()
clm_bernoulli = Bernoulli.fit(train_matrix, y_train)
result_bernou = clm_bernoulli.predict(test_matrix)
```
7. 输出结果:
```python
print('多项式模型的预测结果,类型,长度:')
print(result_nomial, type(result_nomial), result_nomial.shape)
print('多项式模型的前一百个预测结果:')
print(result_nomial[0:100])
print('多项式模型模型R²评分:'+ str(clm_nomial.score(test_matrix, y_test)))
print('\n----------------------------------\n')
print('伯努利模型的预测结果,类型,长度:')
print(result_bernou, type(result_bernou), result_bernou.shape)
print('伯努利模型的前一百个预测结果:')
print(result_bernou[0:100])
print('伯努利模型R²评分:'+ str(clm_bernoulli.score(test_matrix, y_test)))
```
其中,输出结果包括模型的预测结果、类型、长度、前一百个预测结果以及模型的R²评分。
Eigen::Vector3f tmp_t_verts = cam->m_exter_calib.topRightCorner(3, 1); Eigen::Matrix3f tmp_inv_r_mat= cam->m_exter_calib.topLeftCorner(3, 3).transpose(); Eigen::Vector3f tmp_root_point = -tmp_inv_r_mat * tmp_t_verts;
这段代码主要是对相机的外参数进行计算,具体分为三步:
1. 首先,从相机的外参数矩阵(3x4)中取出右上角的3x1矩阵,即相机的平移向量tmp_t_verts。
2. 然后,从相机的外参数矩阵中取出左上角的3x3矩阵,即相机的旋转矩阵,并对其进行转置操作,得到tmp_inv_r_mat。
3. 最后,通过公式 tmp_root_point = -tmp_inv_r_mat * tmp_t_verts 计算出相机坐标系下的原点在世界坐标系下的位置tmp_root_point。
也就是说,这段代码用于计算相机坐标系下的原点在世界坐标系下的位置,是相机标定和位姿估计等操作中常用的计算方法之一。
阅读全文