帮我写一段用基础函数实现的NTRU数字签名功能的MATLAB代码
时间: 2024-05-01 21:17:35 浏览: 220
好的,以下是用基础函数实现的NTRU数字签名功能的MATLAB代码:
```
% NTRU数字签名功能的MATLAB代码
% 生成NTRU密钥对
N = 503; % 随机质数
p = 3; % 必须小于N
q = 64; % 必须小于N
f = 3; % 必须小于N
g = 12; % 必须小于N
h = 1; % 必须小于N
phi_n = (N-1)*(N+1); % 欧拉函数phi(N)
while gcd(phi_n, p*q) ~= 1
p = randi([2, N-1]); % 随机p
q = randi([2, N-1]); % 随机q
end
f_pq = FastPolyInverse(1+q*f-p*f^2, N); % 模N下的f_pq
g_pq = FastPolyInverse(1+q*g-p*g^2, N); % 模N下的g_pq
h_pq = FastPolyInverse(1+q*h-p*h^2, N); % 模N下的h_pq
F_pq = PolyPower(f_pq, N-1, N); % 模N下的F_pq
G_pq = PolyPower(g_pq, N-1, N); % 模N下的G_pq
H_pq = PolyPower(h_pq, N-1, N); % 模N下的H_pq
pk = [F_pq, G_pq, H_pq]; % 公钥
sk = [f_pq, g_pq, h_pq]; % 私钥
% 生成消息m
m = randi([0,1], [1, N+1]);
% NTRU数字签名
s = randi([0,1], [1, N+1]); % 生成随机数s
e = PolyPower(g_pq, s, N) .* PolyPower(f_pq, m, N); % 计算e
x = PolyPower(f_pq, s, N); % 计算x
y = PolyMult(H_pq, e) + PolyMult(G_pq, x); % 计算y
% 验证数字签名
e_computed = PolyMult(f_pq, y) - PolyMult(g_pq, x); % 计算e'
if isequal(e_computed, e) % 验证通过
disp('数字签名验证通过')
else % 验证失败
disp('数字签名验证失败')
end
% 基本多项式幂运算
function y = PolyPower(poly, exp, mod)
y = mod(1, mod)*ones(1, length(poly)); % 初始化多项式y=1
while exp > 0
if mod(exp, 2) == 1 % 判断指数是否为奇数
y = PolyMult(y, poly);
end
exp = floor(exp/2);
poly = PolyMult(poly, poly);
end
end
% 基本多项式乘法
function y = PolyMult(poly1, poly2)
m = length(poly1); % 多项式1的次数
n = length(poly2); % 多项式2的次数
y = zeros(1, m+n-1); % 计算结果的次数为m+n-1
for i = 1:m
for j = 1:n
y(i+j-1) = y(i+j-1) + poly1(i)*poly2(j); % 多项式相乘
end
end
y = mod(y, N); % 模N取余
end
% 快速多项式逆运算
function y = FastPolyInverse(poly, mod)
y = mod(1, mod)*ones(1, length(poly)); % 初始化多项式y=1
while length(y) < length(poly) % 倍增算法
y = 2*y - PolyMult(y, PolyMult(y, poly));
end
y = mod(y, mod); % 模mod取余
end
```
希望能够对你有所帮助!
阅读全文