import serial import pywt import numpy as np import time # 接收数据 ser = serial.Serial('COM3', 115200) # 115200 是波特率 fi = 0 for turn in range(0, 3): # 设置接收数据轮次 n = 0 Sum = 0 m = 1000 dataset = [1 for i in range(1000)] while True: # 设置接收数据个数 n = n + 1 if n > 1000: break # 开始接收数据 data = ser.readline().strip() # print(data.decode()) if n > 1: if abs(float(data) - float(dataset[n - 2])) < 700: dataset[n-1] = dataset[n-2] else: dataset[n-1] = data # 使用小波分析进行阈值去噪声 w = pywt.Wavelet('db8') # 用Daubechies8小波 maxlev = pywt.dwt_max_level(len(dataset), w.dec_len) # 最大分解的阶数 # print("The maximum level is " + str(maxlev)) threshold = 0.5 # 阈值滤波 coeffs = pywt.wavedec(dataset, 'db8', level=maxlev) # 将信号进行小波分解 for i in range(1, len(coeffs)): coeffs[i] = pywt.threshold(coeffs[i], threshold * max(coeffs[i])) # 将噪声滤波 datarec = pywt.waverec(coeffs, 'db8') # 对信号重构 # print(str(datarec)) fi = datarec + fi print("The final result data is " + str(sum(datarec)/len(datarec))) print("average is " + str(sum(fi)/len(fi) / 3))有报错 if abs(float(data) - float(dataset[n - 2])) < 700: ValueError: could not convert string to float: b'1850035.62500\x00'

时间: 2024-04-27 16:22:53 浏览: 14
这个报错的原因可能是因为从串口接收到的数据是一个带有字节格式的字符串,无法用float()函数直接转换。你需要先将字节格式的字符串转换成普通的字符串,再进行转换。你可以使用decode()函数将字节格式的字符串转化为普通的字符串,例如:`if abs(float(data.decode()) - float(dataset[n - 2])) < 700:`。另外,你需要注意,串口接收到的数据可能带有一些无关字符,需要进行去除,例如使用strip()函数。
相关问题

代码import serial import pywt import numpy as np import time # 接收数据 ser = serial.Serial('COM3', 115200) # 115200 是波特率 fi = 0 for turn in range(0, 3): # 设置接收数据轮次 n = 0 Sum = 0 m = 1000 dataset = [1 for i in range(1000)] while True: # 设置接收数据个数 n = n + 1 if n > 1000: break # 开始接收数据 data = ser.readline().strip() print(data.decode()) if n > 1: if abs(int.from_bytes(data, byteorder='little', signed=False) - int.from_bytes(dataset[n - 2], byteorder='little', signed=False)) >= 700: dataset[n-1] = dataset[n-2] else: dataset[n-1] = data # 使用小波分析进行阈值去噪声 w = pywt.Wavelet('db8') # 用Daubechies8小波 maxlev = pywt.dwt_max_level(len(dataset), w.dec_len) # 最大分解的阶数 # print("The maximum level is " + str(maxlev)) threshold = 0.5 # 阈值滤波 coeffs = pywt.wavedec(dataset, 'db8', level=maxlev) # 将信号进行小波分解 for i in range(1, len(coeffs)): coeffs[i] = pywt.threshold(coeffs[i], threshold * max(coeffs[i])) # 将噪声滤波 datarec = pywt.waverec(coeffs, 'db8') # 对信号重构 # print(str(datarec)) fi = datarec + fi print("The final result data is " + str(sum(datarec)/len(datarec))) print("average is " + str(sum(fi)/len(fi) / 3))有报错Traceback (most recent call last): File "C:/Users/86138/Desktop/光设校赛/main.py", line 23, in <module> if abs(int.from_bytes(data, byteorder='little', signed=False) - int.from_bytes(dataset[n - 2], byteorder='little', TypeError: cannot convert 'int' object to bytes

这个错误是因为在第23行代码中,你尝试使用 `int.from_bytes()` 函数将一个整数转换为字节,但是该函数只能将字节转换为整数。你应该将 `dataset` 中的数据从字节转换为整数,然后再进行比较。可以使用 `int()` 函数将字节转换为整数,例如将第23行代码修改为: ``` if abs(int.from_bytes(data, byteorder='little', signed=False) - int(dataset[n - 2])) >= 700: ``` 同时,你需要注意 `dataset` 列表的数据类型,应该是整数类型而不是字节类型。可以使用以下代码初始化 `dataset`: ``` dataset = [1 for i in range(1000)] ``` 另外,你需要确保在接收数据时,每次接收到的数据都是字节类型。

import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns import yfinance as yf import pywt 这些要怎样装库

你可以使用pip来安装这些库。在命令行中输入以下命令,每次输入一条,按回车键执行即可: ``` pip install pandas pip install numpy pip install matplotlib pip install seaborn pip install yfinance pip install PyWavelets ``` 这些命令将会下载和安装相应的库和依赖项。如果你使用的是Anaconda,也可以在Anaconda Navigator中进行相应的安装。

相关推荐

import pandas as pd import matplotlib.pyplot as plt import numpy as np import pywt file_name = 'E:/liuyuan/ceshi/zhongyao/Subject_1_0cmH20_norm_breaths.csv' data = pd.read_csv(file_name, skiprows=1, usecols=[0, 2], names=['Time', 'Flow']) x = list() y = list() for i in range(len(data)): x.append(float(data.values[i][0])) y.append(float(data.values[i][1])) start_index = 0 end_index = 5372 time = np.arange(start_index, end_index) flow = np.arange(start_index, end_index) time = data['Time'][start_index:end_index] flow = data['Flow'] def wavelet_filter(data): wavelet = 'db4' # 选择小波基函数 level = 5 # 小波变换的层数 # 小波变换 coeffs = pywt.wavedec(data, wavelet, level=level) threshold = np.std(coeffs[-level]) * np.sqrt(2 * np.log(len(data))) coeffs[1:] = (pywt.threshold(c, threshold, mode='soft') for c in coeffs[1:]) filtered_data = pywt.waverec(coeffs, wavelet) return filtered_data 对Flow进行小波变换滤波 filtered_flow = wavelet_filter(flow) fig, ax = plt.subplots(figsize=(10, 5)) plt.xlim(0, 60) ax.set_ylim(-0.7, 0.7) ax.set_xlabel('Time(s)', fontsize=10) ax.set_ylabel('Flow(L/s)', fontsize=10) ax.plot(time, filtered_flow, label='Filtered Flow') ax.legend() ax.grid(True, linewidth=0.3, alpha=0.5, color='gray') plt.tight_layout() # 自动调整子图的布局 plt.show()import pandas as pd import matplotlib.pyplot as plt import numpy as np import pywt file_name = 'E:/liuyuan/ceshi/zhongyao/Subject_1_0cmH20_norm_breaths.csv' data = pd.read_csv(file_name, skiprows=1, usecols=[0, 2], names=['Time', 'Flow']) x = list() y = list() for i in range(len(data)): x.append(float(data.values[i][0])) y.append(float(data.values[i][1])) start_index = 0 end_index = 5372 time = np.arange(start_index, end_index) flow = np.arange(start_index, end_index) time = data['Time'][start_index:end_index] flow = data['Flow'] def wavelet_filter(data): wavelet = 'db4' # 选择小波基函数 level = 5 # 小波变换的层数 coeffs = pywt.wavedec(data, wavelet, level=level) threshold = np.std(coeffs[-level]) * np.sqrt(2 * np.log(len(data))) coeffs[1:] = (pywt.threshold(c, threshold, mode='soft') for c in coeffs[1:]) # 逆小波变换 filtered_data = pywt.waverec(coeffs, wavelet) return filtered_data filtered_flow = wavelet_filter(flow) fig, ax = plt.subplots(figsize=(10, 5)) plt.xlim(0, 60) ax.set_ylim(-0.7, 0.7) ax.set_xlabel('Time(s)', fontsize=10) ax.set_ylabel('Flow(L/s)', fontsize=10) ax.plot(time, filtered_flow, label='Filtered Flow') ax.legend() ax.grid(True, linewidth=0.3, alpha=0.5, color='gray') plt.tight_layout() plt.show()在此代码上添加切分代码,并按照合适窗口大小切分完准确显示

优化:import numpy as np import scipy.signal as signal import scipy.io.wavfile as wavfile import pywt import matplotlib.pyplot as plt def wiener_filter(x, fs, cutoff): # 维纳滤波函数 N = len(x) freqs, Pxx = signal.periodogram(x, fs=fs) H = np.zeros(N) H[freqs <= cutoff] = 1 Pxx_smooth = np.maximum(Pxx, np.max(Pxx) * 1e-6) H_smooth = np.maximum(H, np.max(H) * 1e-6) G = H_smooth / (H_smooth + 1 / Pxx_smooth) y = np.real(np.fft.ifft(np.fft.fft(x) * G)) return y def kalman_filter(x): # 卡尔曼滤波函数 Q = np.diag([0.01, 1]) R = np.diag([1, 0.1]) A = np.array([[1, 1], [0, 1]]) H = np.array([[1, 0], [0, 1]]) x_hat = np.zeros((2, len(x))) P = np.zeros((2, 2, len(x))) x_hat[:, 0] = np.array([x[0], 0]) P[:, :, 0] = np.eye(2) for k in range(1, len(x)): x_hat[:, k] = np.dot(A, x_hat[:, k-1]) P[:, :, k] = np.dot(np.dot(A, P[:, :, k-1]), A.T) + Q K = np.dot(np.dot(P[:, :, k], H.T), np.linalg.inv(np.dot(np.dot(H, P[:, :, k]), H.T) + R)) x_hat[:, k] += np.dot(K, x[k] - np.dot(H, x_hat[:, k])) P[:, :, k] = np.dot(np.eye(2) - np.dot(K, H), P[:, :, k]) y = x_hat[0, :] return y # 读取含有噪声的语音信号 rate, data = wavfile.read("shengyin.wav") data = data.astype(float) / 32767.0 # 维纳滤波 y_wiener = wiener_filter(data, fs=rate, cutoff=1000) # 卡尔曼滤波 y_kalman = kalman_filter(data) # 保存滤波后的信号到文件中 wavfile.write("wiener_filtered.wav", rate, np.int32(y_wiener * 32767.0)) wavfile.write("kalman_filtered.wav", rate, np.int32(y_kalman * 32767.0))

最新推荐

recommend-type

基于C语言+AT89C52单片机搭建的PID直流电机控制程序,用于Proteus电路仿真+源码+开发文档(高分优秀项目)

基于C语言+AT89C52单片机搭建的PID直流电机控制程序,用于Proteus电路仿真+源码+开发文档,适合毕业设计、课程设计、项目开发。项目源码已经过严格测试,可以放心参考并在此基础上延申使用~ 项目简介: 本文所介绍的基于AT89C52单片机的PID直流电机控制系统设计过程主要分为MATLAB建模、Proteus硬件电路的设计以及基于C51语法的单片机程序开发编写。本系统性质为单闭环控制,即通过转速对电机进行调速;将采用增量式编码器进行电机转速的测量,并设定PWM波形生成的开关频率为7KHz,速度回路的采样周期为14ms。 1. 所需仿真平台 单片机部分代码主要利用Keil uVision5平台进行编译,工具链采用C51。仿真电路搭建平台为Proteus 8 Professional。 2. Release版本 编译后的运行环境为Atmel AT89C52单片机平台。 3. 运行 将已发布的HEX文件放入Proteus 8 Professional仿真平台或以上版本内运行即可; 可通过修改Proteus仿真文件方波的频率(开关频率)来改变PWM相应的频率;
recommend-type

基于.net8的物料管理系统

{FB0886BF-35E0-480F-8B15-E4D52B351628}
recommend-type

Java开发案例-springboot-32-整合sharding-jdbc-源代码+文档.rar

Java开发案例-springboot-32-整合sharding-jdbc-源代码+文档.rar Java开发案例-springboot-32-整合sharding-jdbc-源代码+文档.rar Java开发案例-springboot-32-整合sharding-jdbc-源代码+文档.rar Java开发案例-springboot-32-整合sharding-jdbc-源代码+文档.rar Java开发案例-springboot-32-整合sharding-jdbc-源代码+文档.rar Java开发案例-springboot-32-整合sharding-jdbc-源代码+文档.rar Java开发案例-springboot-32-整合sharding-jdbc-源代码+文档.rar
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

MATLAB柱状图在信号处理中的应用:可视化信号特征和频谱分析

![matlab画柱状图](https://img-blog.csdnimg.cn/3f32348f1c9c4481a6f5931993732f97.png) # 1. MATLAB柱状图概述** MATLAB柱状图是一种图形化工具,用于可视化数据中不同类别或组的分布情况。它通过绘制垂直条形来表示每个类别或组中的数据值。柱状图在信号处理中广泛用于可视化信号特征和进行频谱分析。 柱状图的优点在于其简单易懂,能够直观地展示数据分布。在信号处理中,柱状图可以帮助工程师识别信号中的模式、趋势和异常情况,从而为信号分析和处理提供有价值的见解。 # 2. 柱状图在信号处理中的应用 柱状图在信号处理
recommend-type

HSV转为RGB的计算公式

HSV (Hue, Saturation, Value) 和 RGB (Red, Green, Blue) 是两种表示颜色的方式。下面是将 HSV 转换为 RGB 的计算公式: 1. 将 HSV 中的 S 和 V 值除以 100,得到范围在 0~1 之间的值。 2. 计算色相 H 在 RGB 中的值。如果 H 的范围在 0~60 或者 300~360 之间,则 R = V,G = (H/60)×V,B = 0。如果 H 的范围在 60~120 之间,则 R = ((120-H)/60)×V,G = V,B = 0。如果 H 的范围在 120~180 之间,则 R = 0,G = V,B =
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

MATLAB柱状图在数据分析中的作用:从可视化到洞察

![MATLAB柱状图在数据分析中的作用:从可视化到洞察](https://img-blog.csdnimg.cn/img_convert/1a36558cefc0339f7836cca7680c0aef.png) # 1. MATLAB柱状图概述** 柱状图是一种广泛用于数据可视化的图表类型,它使用垂直条形来表示数据中不同类别或组别的值。在MATLAB中,柱状图通过`bar`函数创建,该函数接受数据向量或矩阵作为输入,并生成相应的高度条形。 柱状图的优点在于其简单性和易于理解性。它们可以快速有效地传达数据分布和组别之间的比较。此外,MATLAB提供了广泛的定制选项,允许用户调整条形颜色、