import serial import pywt import numpy as np import time # 接收数据 ser = serial.Serial('COM3', 115200) # 115200 是波特率 fi = 0 for turn in range(0, 3): # 设置接收数据轮次 n = 0 Sum = 0 m = 1000 dataset = [1 for i in range(1000)] while True: # 设置接收数据个数 n = n + 1 if n > 1000: break # 开始接收数据 data = ser.readline().strip() # print(data.decode()) if n > 1: if abs(float(data) - float(dataset[n - 2])) < 700: dataset[n-1] = dataset[n-2] else: dataset[n-1] = data # 使用小波分析进行阈值去噪声 w = pywt.Wavelet('db8') # 用Daubechies8小波 maxlev = pywt.dwt_max_level(len(dataset), w.dec_len) # 最大分解的阶数 # print("The maximum level is " + str(maxlev)) threshold = 0.5 # 阈值滤波 coeffs = pywt.wavedec(dataset, 'db8', level=maxlev) # 将信号进行小波分解 for i in range(1, len(coeffs)): coeffs[i] = pywt.threshold(coeffs[i], threshold * max(coeffs[i])) # 将噪声滤波 datarec = pywt.waverec(coeffs, 'db8') # 对信号重构 # print(str(datarec)) fi = datarec + fi print("The final result data is " + str(sum(datarec)/len(datarec))) print("average is " + str(sum(fi)/len(fi) / 3))有报错 if abs(float(data) - float(dataset[n - 2])) < 700: ValueError: could not convert string to float: b'1850035.62500\x00'
时间: 2024-04-27 11:22:53 浏览: 150
这个报错的原因可能是因为从串口接收到的数据是一个带有字节格式的字符串,无法用float()函数直接转换。你需要先将字节格式的字符串转换成普通的字符串,再进行转换。你可以使用decode()函数将字节格式的字符串转化为普通的字符串,例如:`if abs(float(data.decode()) - float(dataset[n - 2])) < 700:`。另外,你需要注意,串口接收到的数据可能带有一些无关字符,需要进行去除,例如使用strip()函数。
相关问题
代码import serial import pywt import numpy as np import time # 接收数据 ser = serial.Serial('COM3', 115200) # 115200 是波特率 fi = 0 for turn in range(0, 3): # 设置接收数据轮次 n = 0 Sum = 0 m = 1000 dataset = [1 for i in range(1000)] while True: # 设置接收数据个数 n = n + 1 if n > 1000: break # 开始接收数据 data = ser.readline().strip() print(data.decode()) if n > 1: if abs(int.from_bytes(data, byteorder='little', signed=False) - int.from_bytes(dataset[n - 2], byteorder='little', signed=False)) >= 700: dataset[n-1] = dataset[n-2] else: dataset[n-1] = data # 使用小波分析进行阈值去噪声 w = pywt.Wavelet('db8') # 用Daubechies8小波 maxlev = pywt.dwt_max_level(len(dataset), w.dec_len) # 最大分解的阶数 # print("The maximum level is " + str(maxlev)) threshold = 0.5 # 阈值滤波 coeffs = pywt.wavedec(dataset, 'db8', level=maxlev) # 将信号进行小波分解 for i in range(1, len(coeffs)): coeffs[i] = pywt.threshold(coeffs[i], threshold * max(coeffs[i])) # 将噪声滤波 datarec = pywt.waverec(coeffs, 'db8') # 对信号重构 # print(str(datarec)) fi = datarec + fi print("The final result data is " + str(sum(datarec)/len(datarec))) print("average is " + str(sum(fi)/len(fi) / 3))有报错Traceback (most recent call last): File "C:/Users/86138/Desktop/光设校赛/main.py", line 23, in <module> if abs(int.from_bytes(data, byteorder='little', signed=False) - int.from_bytes(dataset[n - 2], byteorder='little', TypeError: cannot convert 'int' object to bytes
这个错误是因为在第23行代码中,你尝试使用 `int.from_bytes()` 函数将一个整数转换为字节,但是该函数只能将字节转换为整数。你应该将 `dataset` 中的数据从字节转换为整数,然后再进行比较。可以使用 `int()` 函数将字节转换为整数,例如将第23行代码修改为:
```
if abs(int.from_bytes(data, byteorder='little', signed=False) - int(dataset[n - 2])) >= 700:
```
同时,你需要注意 `dataset` 列表的数据类型,应该是整数类型而不是字节类型。可以使用以下代码初始化 `dataset`:
```
dataset = [1 for i in range(1000)]
```
另外,你需要确保在接收数据时,每次接收到的数据都是字节类型。
import numpy as np import pywt from scipy.fftpack import dct def nsst(image): # 将图像转换为灰度图像 def nsst(image): # 将图像转换为灰度图像 if len(image.shape) == 3: image = np.mean(image, axis=2) # 设置NSST参数 scales = 3 shearlet_system = pywt.ShearletSystem2D(image.shape, scales) # 计算图像的NSST分解系数 coeffss = [] for scale in range(scales): for shear in range(shearlet_system.shear_count): shearlet = shearlet_system.shearlets[scale][shear] shearlet_fft = np.fft.fft2(shearlet, image.shape) shearlet_fft_conj = np.conj(shearlet_fft) image_fft = np.fft.fft2(image) shearlet_coeff = np.fft.ifft2(shearlet_fft_conj * image_fft) coeffss.append(shearlet_coeff) # 将NSST分解系数组合成一个张量 coeffs = np.stack(coeffss, axis=-1) return coeffs coeffs1 = nsst_decomposition(image1, num_scales=4) coeffs2 = nsst_decomposition(image2, num_scales=4)
根据你提供的代码,错误信息提示 'nsst_decomposition' is not defined,说明你的代码中不存在名为 'nsst_decomposition' 的函数。你需要定义这个函数或导入包含这个函数的模块。在你的代码中,应该将函数名 'nsst' 替换为 'nsst_decomposition',以便正确地调用函数。你可以尝试修改代码如下:
```python
import numpy as np
import pywt
from scipy.fftpack import dct
def nsst_decomposition(image):
# 将图像转换为灰度图像
if len(image.shape) == 3:
image = np.mean(image, axis=2)
# 设置NSST参数
scales = 3
shearlet_system = pywt.ShearletSystem2D(image.shape, scales)
# 计算图像的NSST分解系数
coeffss = []
for scale in range(scales):
for shear in range(shearlet_system.shear_count):
shearlet = shearlet_system.shearlets[scale][shear]
shearlet_fft = np.fft.fft2(shearlet, image.shape)
shearlet_fft_conj = np.conj(shearlet_fft)
image_fft = np.fft.fft2(image)
shearlet_coeff = np.fft.ifft2(shearlet_fft_conj * image_fft)
coeffss.append(shearlet_coeff)
# 将NSST分解系数组合成一个张量
coeffs = np.stack(coeffss, axis=-1)
return coeffs
coeffs1 = nsst_decomposition(image1)
coeffs2 = nsst_decomposition(image2)
```
这样应该可以解决该错误。
阅读全文