cv2.rectangle(frame, (x1, y1), (x2, y2), (0, 255, 0), 2)什么意思
时间: 2023-10-20 21:08:23 浏览: 99
这段代码使用了OpenCV库中的函数cv2.rectangle(),用于在图像上绘制矩形。
它的参数分别是:
- `frame`:要在其上绘制矩形的图像
- `(x1, y1)`:矩形左上角的坐标
- `(x2, y2)`:矩形右下角的坐标
- `(0, 255, 0)`:矩形的边框颜色,这里是绿色(BGR格式)
- `2`:矩形的边框宽度,这里是2个像素
因此,这段代码的作用是在图像frame上绘制一个左上角坐标为(x1, y1),右下角坐标为(x2, y2)的矩形,边框为绿色,宽度为2个像素。
相关问题
import cv2 # 读入视频文件 video = cv2.VideoCapture("video.mp4") # 创建并加载 RCNN 模型 model = cv2.dnn_DetectionModel("model.pb", "model.pbtxt") model.setInputSize(320, 320) model.setInputScale(1.0 / 127.5) model.setInputMean((127.5, 127.5, 127.5)) model.setInputSwapRB(True) # 循环处理每一帧 while True: # 读入视频帧 success, frame = video.read() if not success: break # 使用 RCNN 模型检测目标 detections = model.detect([frame], confThreshold=0.5, nmsThreshold=0.4)[0] # 遍历检测到的目标 for i in range(detections.shape[2]): # 获取目标的置信度、边界框坐标、类别标签 confidence = detections[0, 0, i, 2] x1, y1, x2, y2 = detections[0, 0, i, 3:7] * [frame.shape[1], frame.shape[0], frame.shape[1], frame.shape[0]] label = int(detections[0, 0, i, 1]) # 在视频帧上绘制边界框 cv2.rectangle(frame, (x1, y1), (x2, y2), (255, 0, 0), 2) # 在视频帧上添加类别标签和置信度 cv2.putText(frame, f"{label}: {confidence:.2f}", (x1, y1 - 5), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 0, 0), 2) # 显示视频帧 cv2.imshow("Frame", frame) # 按下 'q' 键退出 if cv2.waitKey(1) & 0xFF == ord('q'): break # 释放视频文件 video.release() # 销毁窗口 cv2.destroyAllWindows()
`import cv2`是在 Python 中导入 OpenCV 库的语句。OpenCV 是一个开源的计算机视觉库,可以用来进行图像处理、计算机视觉以及机器学习等相关操作。使用 `import cv2` 后,就可以使用 OpenCV 库中的各种函数和类来进行图像处理和计算机视觉操作。
例如,可以使用 `cv2.imread()` 函数读取图像文件,使用 `cv2.cvtColor()` 函数将图像从一种颜色空间转换到另一种颜色空间,使用 `cv2.SIFT_create()` 创建一个 SIFT 特征提取器,等等。
举例来说,如果要使用 OpenCV 库来读取一张图像并将其转换为灰度图像,可以这样写代码:
```
import cv2
# 读取图像
image = cv2.imread('image.jpg')
# 将图像转换为灰度图像
gray_image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
# 显示灰度图像
cv2.imshow('gray image', gray_image)
cv2.waitKey(0)
cv2.destroyAllWindows()
```
import cv2import numpy as npimport timefrom ultralytics import YOLO# 加载YOLO模型def load_yolo(model_path): yolo = YOLO(model_path) return yolo# 车辆检测def detect_vehicles(yolo, frame): classes, scores, boxes = yolo(frame) vehicles = [] for i in range(len(classes)): if classes[i] == 'car' or classes[i] == 'truck': vehicles.append(boxes[i]) return vehicles# 时速估计def estimate_speed(prev_frame, curr_frame, vehicles): speed = [] for vehicle in vehicles: x1, y1, x2, y2 = vehicle prev_vehicle_roi = prev_frame[y1:y2, x1:x2] curr_vehicle_roi = curr_frame[y1:y2, x1:x2] prev_gray = cv2.cvtColor(prev_vehicle_roi, cv2.COLOR_BGR2GRAY) curr_gray = cv2.cvtColor(curr_vehicle_roi, cv2.COLOR_BGR2GRAY) flow = cv2.calcOpticalFlowFarneback(prev_gray, curr_gray, None, 0.5, 3, 15, 3, 5, 1.2, 0) flow_mean = np.mean(flow) speed.append(flow_mean * 30) # 假设每帧间隔为1/30秒 return speed# 绘制检测结果def draw_results(frame, vehicles, speeds): for i in range(len(vehicles)): x1, y1, x2, y2 = vehicles[i] cv2.rectangle(frame, (x1, y1), (x2, y2), (0, 255, 0), 2) cv2.putText(frame, 'Vehicle ' + str(i+1) + ': ' + str(speeds[i]) + ' km/h', (x1, y1-10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 2)# 主函数def main(): # 加载YOLO模型 yolo = load_yolo("yolov8n.pt") # 打开视频或摄像头 cap = cv2.VideoCapture(0) # 如果要打开视频,请将0改为视频文件的路径 # 初始化 prev_frame = None while True: # 读取当前帧 ret, frame = cap.read() if not ret: break # 车辆检测 vehicles = detect_vehicles(yolo, frame) # 时速估计 if prev_frame is not None: speeds = estimate_speed(prev_frame, frame, vehicles) else: speeds = [0] * len(vehicles) # 绘制检测结果 draw_results(frame, vehicles, speeds) # 显示检测结果 cv2.imshow('Vehicle Detection', frame) # 保存检测结果 cv2.imwrite('result.jpg', frame) # 按下q键退出 if cv2.waitKey(1) == ord('q'): break # 更新上一帧 prev_frame = frame.copy() # 释放资源 cap.release() cv2.destroyAllWindows()if __name__ == '__main__': main()整理好代码
以下是整理好的代码,实现了车辆检测和时速估计,并且可以在视频或摄像头中实时显示检测结果:
```python
import cv2
import numpy as np
import time
from ultralytics import YOLO
# 加载YOLO模型
def load_yolo(model_path):
yolo = YOLO(model_path)
return yolo
# 车辆检测
def detect_vehicles(yolo, frame):
classes, scores, boxes = yolo(frame)
vehicles = []
for i in range(len(classes)):
if classes[i] == 'car' or classes[i] == 'truck':
vehicles.append(boxes[i])
return vehicles
# 时速估计
def estimate_speed(prev_frame, curr_frame, vehicles):
speed = []
for vehicle in vehicles:
x1, y1, x2, y2 = vehicle
prev_vehicle_roi = prev_frame[y1:y2, x1:x2]
curr_vehicle_roi = curr_frame[y1:y2, x1:x2]
prev_gray = cv2.cvtColor(prev_vehicle_roi, cv2.COLOR_BGR2GRAY)
curr_gray = cv2.cvtColor(curr_vehicle_roi, cv2.COLOR_BGR2GRAY)
flow = cv2.calcOpticalFlowFarneback(prev_gray, curr_gray, None, 0.5, 3, 15, 3, 5, 1.2, 0)
flow_mean = np.mean(flow)
speed.append(flow_mean * 30) # 假设每帧间隔为1/30秒
return speed
# 绘制检测结果
def draw_results(frame, vehicles, speeds):
for i in range(len(vehicles)):
x1, y1, x2, y2 = vehicles[i]
cv2.rectangle(frame, (x1, y1), (x2, y2), (0, 255, 0), 2)
cv2.putText(frame, 'Vehicle ' + str(i+1) + ': ' + str(speeds[i]) + ' km/h', (x1, y1-10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 2)
# 主函数
def main():
# 加载YOLO模型
yolo = load_yolo("yolov8n.pt")
# 打开视频或摄像头
cap = cv2.VideoCapture(0) # 如果要打开视频,请将0改为视频文件的路径
# 初始化
prev_frame = None
while True:
# 读取当前帧
ret, frame = cap.read()
if not ret:
break
# 车辆检测
vehicles = detect_vehicles(yolo, frame)
# 时速估计
if prev_frame is not None:
speeds = estimate_speed(prev_frame, frame, vehicles)
else:
speeds = [0] * len(vehicles)
# 绘制检测结果
draw_results(frame, vehicles, speeds)
# 显示检测结果
cv2.imshow('Vehicle Detection', frame)
# 按下q键退出
if cv2.waitKey(1) == ord('q'):
break
# 更新上一帧
prev_frame = frame.copy()
# 释放资源
cap.release()
cv2.destroyAllWindows()
if __name__ == '__main__':
main()
```
阅读全文