斐波那契数的递归和迭代算法
时间: 2023-06-24 12:08:56 浏览: 205
递归算法算斐波那契数列
斐波那契数列是指:0、1、1、2、3、5、8、13、21、34、……,即第一项为0,第二项为1,后面每一项都是前两项的和。
递归算法:
```python
def fibonacci(n):
if n <= 1:
return n
else:
return fibonacci(n-1) + fibonacci(n-2)
```
这个递归算法的思路是:当n为0或1时,直接返回n;否则,返回前两项的和,前两项的值通过递归调用求得。
但是递归算法的效率很低,因为它会重复计算已经计算过的项,时间复杂度为O(2^n),所以在计算大量的斐波那契数列时,递归算法的效率不高。
迭代算法:
```python
def fibonacci(n):
if n <= 1:
return n
a, b = 0, 1
for i in range(2, n+1):
c = a + b
a, b = b, c
return b
```
这个迭代算法的思路是:初始化前两项a和b为0和1,然后从第三项开始迭代计算每一项,每次计算都是前两项的和,最后返回第n项的值。这个算法不会重复计算已经计算过的项,时间复杂度为O(n),所以效率比递归算法高很多。
阅读全文