#include <opencv2/opencv.hpp> #include <iostream> using namespace cv; using namespace std; int main() { int startf = 39, endf = 512; // 视频帧的起始和结束帧号 // 读入背景图像 Mat Ibj = imread("D://yanyi//opencv//test//opencv1//BackgroundFrame.jpg", IMREAD_GRAYSCALE); for (int i = startf; i <= endf; i++) // 遍历视频帧 { // 读入当前视频帧并转化为灰度图像 Mat I1 = imread("frame" + to_string(i) + ".jpg"); Mat gray; cvtColor(I1, gray, COLOR_BGR2GRAY); // 将灰度图像转换为双精度浮点型并减去背景图像 gray.convertTo(gray, CV_64F); gray -= Ibj; // 对图像进行二值化处理 Mat bw1; threshold(gray, bw1, 25, 255, THRESH_BINARY); // 对二值化图像进行形态学开运算 Mat bwAreaOpenBW; morphologyEx(bw1, bwAreaOpenBW, MORPH_OPEN, getStructuringElement(MORPH_RECT, Size(3, 3))); // 对二值化图像进行连通组件分析 Mat labels; if (bwAreaOpenBW.depth() != CV_8U && bwAreaOpenBW.depth() != CV_8S) { bwAreaOpenBW.convertTo(bwAreaOpenBW, CV_8U); // or CV_8S } int n = connectedComponents(bwAreaOpenBW, labels, 8, CV_16U); // 遍历每一个连通组件 for (int j = 1; j < n; j++) { // 提取连通组件中的像素点 Mat mask = labels == j; vector<Point> points; findNonZero(mask, points); // 构建矩阵并求解线性方程组 Mat X(points.size(), 2, CV_64F); for (int k = 0; k < points.size(); k++) { X.at<double>(k, 0) = points[k].x; X.at<double>(k, 1) = points[k].y; } Mat Y(points.size(), 1, CV_64F); for (int k = 0; k < points.size(); k++) { Y.at<double>(k, 0) = points[k].y; } Mat coef; solve(X, Y, coef, DECOMP_SVD); // 计算轴的两个端点的坐标 double b1 = coef.at<double>(0, 0); double b2 = coef.at<double>(1, 0); double minzhi = points[0].x; double maxzhi = points[0].x; for (int k = 1; k < points.size(); k++) { if (points[k].x < minzhi) { minzhi = points[k].x; } if (points[k].x > maxzhi) { maxzhi = points[k].x; } } double duan1x = b1 + b2 * minzhi; double duan1y = minzhi; double duan2x = b1 + b2 * maxzhi; double duan2y = maxzhi; // 在图像上绘制轴的两个端点 circle(I1, Point(duan1x, duan1y), 3, Scalar(0, 0, 255), -1); circle(I1, Point(duan2x, duan2y), 3, Scalar(0, 0, 255), -1); } // 显示处理结果并等待用户按键 imshow("result", I1); waitKey(1); } return 0; }没有绘制出端点是怎么回事
时间: 2024-01-18 20:04:34 浏览: 80
在您的代码中,绘制了轴的两个端点,但是没有将它们绘制在原始图像上,而是绘制在处理结果I1上。因此,当最后显示处理结果时,只显示了处理结果I1,而没有显示原始图像。
要绘制端点并显示在原始图像上,可以将绘制端点的代码移动到以下位置:
```
// 在图像上绘制轴的两个端点
circle(I1, Point(duan1x, duan1y), 3, Scalar(0, 0, 255), -1);
circle(I1, Point(duan2x, duan2y), 3, Scalar(0, 0, 255), -1);
// 显示处理结果并等待用户按键
imshow("result", I1);
waitKey(1);
```
在这个位置上,绘制了端点后,将它们显示到了原始图像I1中,而不是处理结果I1。
请注意,此代码只绘制了端点,并没有将它们连接成一条直线。如果您希望画出直线,请尝试使用cv::line函数。
相关问题
#include<iostream> #include<opencv2/opencv.hpp> #include <opencv2/core/core.hpp> #include<opencv2/highgui/highgui_c.h> #include <opencv2/imgproc/imgproc.hpp> using namespace std; using namespace cv; int main() { //Mat img = imread("cells.jpg", CV_LOAD_IMAGE_GRAYSCALE); // 读入灰度图像 Mat img; Mat img1 = imread("G:/图像处理/实验课设/实验课设5.31/cell3.png"); //cvtColor(img1, img, CV_BGR2GRAY); Mat img_blur; cvtColor(img1, img_blur, CV_BGR2GRAY); Mat img_thresh1; threshold(img_blur, img_thresh1, 0, 255, THRESH_BINARY_INV + THRESH_OTSU); // 二值化 Mat img_thresh; Mat element = getStructuringElement(MORPH_RECT, Size(35, 35), Point(-1, -1)); erode(img_thresh1, img_thresh, element); //morphologyEx(img_thresh1, img_thresh, MORPH_OPEN, kernel); imshow("FUSHI", img_thresh); vector<vector<Point>> contours; findContours(img_thresh, contours, CV_RETR_EXTERNAL, CV_CHAIN_APPROX_SIMPLE); // 寻找轮廓 //findContours(canny_output, contours, hierarchy, CV_RETR_TREE, CV_CHAIN_APPROX_SIMPLE, Point(0, 0)); Mat img_contours = Mat::zeros(img_thresh.size(), CV_8UC3); Scalar color(0, 0, 255); drawContours(img_contours, contours, -1, color); cout << "细胞个数:" << contours.size() << endl; imshow("去噪后的图像", img_blur); imshow("二值化后的图像", img_thresh); imshow("轮廓", img_contours); waitKey(0); return 0; } OpenCV2015版本 把element函数中size()创建滑动控件createTrackbar x64
根据您提供的代码,我理解您的问题是如何使用 createTrackbar 函数来调整 element 的大小。
首先,element 是一个矩阵,用于图像形态学操作。在您的代码中,它是使用以下代码创建的:
```
Mat element = getStructuringElement(MORPH_RECT, Size(35, 35), Point(-1, -1));
```
要在滑动条上调整 element 的大小,您需要使用 createTrackbar 函数创建滑动条,并根据滑动条的值更新 element 的大小。
以下是一个简单的例子,将 createTrackbar 用于调整 element 的大小:
```cpp
#include<iostream>
#include<opencv2/opencv.hpp>
#include<opencv2/core/core.hpp>
#include<opencv2/highgui/highgui.hpp>
#include<opencv2/imgproc/imgproc.hpp>
using namespace std;
using namespace cv;
int element_size = 35; // 初始大小
Mat element;
void on_trackbar(int, void*) {
element = getStructuringElement(MORPH_RECT, Size(element_size, element_size), Point(-1, -1));
}
int main() {
Mat img1 = imread("cell3.png");
Mat img_blur;
cvtColor(img1, img_blur, CV_BGR2GRAY);
Mat img_thresh1;
threshold(img_blur, img_thresh1, 0, 255, THRESH_BINARY_INV + THRESH_OTSU);
Mat img_thresh;
element = getStructuringElement(MORPH_RECT, Size(element_size, element_size), Point(-1, -1));
erode(img_thresh1, img_thresh, element);
namedWindow("FUSHI", WINDOW_NORMAL);
namedWindow("Trackbar", WINDOW_NORMAL);
createTrackbar("Element Size", "Trackbar", &element_size, 100, on_trackbar);
on_trackbar(element_size, 0);
while (true) {
imshow("FUSHI", img_thresh);
char c = waitKey(10);
if (c == 27) break;
}
return 0;
}
```
在这个例子中,我们使用了一个名为 "Trackbar" 的新窗口,并创建了一个名为 "Element Size" 的滑动条,将其最小值设置为 0,最大值设置为 100。我们还设置了一个回调函数 on_trackbar,每当滑动条的值发生变化时都会被调用。
在回调函数中,我们使用当前滑动条的值来更新 element 的大小,并在 "FUSHI" 窗口中显示处理后的图像。在主循环中,我们使用 waitKey 函数来等待用户按下 ESC 键或关闭窗口。
希望这可以帮助您解决问题。
#include <opencv2/opencv.hpp
`#include <opencv2/opencv.hpp>` 是OpenCV库(Open Source Computer Vision Library)在C++中引入头文件的方式,它包含了OpenCV的主要功能模块。OpenCV是一个开源的计算机视觉和机器学习软件库,广泛用于图像和视频处理、实时计算机视觉以及机器学习任务。
在C++中使用OpenCV来寻找图像中的最大像素值,你可以按照以下步骤操作:
1. **包括必要的库**:
```cpp
#include <opencv2/opencv.hpp>
```
这一行告诉编译器要链接OpenCV库并允许访问其功能。
2. **读取图像**:
```cpp
cv::Mat img = cv::imread("image.jpg"); // 替换为你的图片路径
```
使用 `cv::imread()` 函数加载图像到一个 `cv::Mat` 对象中。
3. **选择感兴趣区域或整个图像**:
如果只对特定区域感兴趣,可以提取子矩阵 (`img(rowRange, colRange)`),否则使用整个图像。
4. **计算最大像素值**:
```cpp
std::vector<cv::Point> maxLoc; // 存储最大像素位置
double maxVal;
cv::minMaxLoc(img, &maxVal, nullptr, &maxLoc);
```
`cv::minMaxLoc()` 函数返回图像中的最小值、最大值及其坐标。
5. **打印结果**:
```cpp
std::cout << "Maximum pixel value: " << maxVal << std::endl;
std::cout << "Location of maximum pixel: (" << maxLoc[0].x << ", " << maxLoc.y << ")" << std::endl;
```
阅读全文