transformer时间序列数据的代码实现
时间: 2024-12-27 14:17:13 浏览: 3
Transformer模型主要用于处理序列到序列的问题,例如自然语言翻译,但也可以应用于时间序列预测。在PyTorch中,可以使用`torch.nn.Transformer`模块来构建基于Transformer的时间序列模型。这里是一个简单的例子,展示如何实现基本的Transformer结构用于预测一个时间序列:
```python
import torch
from torch import nn
class TransformerForTimeSeries(nn.Module):
def __init__(self, input_dim, output_dim, num_layers=6, d_model=512, num_heads=8, dropout=0.1):
super(TransformerForTimeSeries, self).__init__()
self.embedding = nn.Embedding(input_dim, d_model)
self.positional_encoding = PositionalEncoding(d_model, dropout)
encoder_layer = nn.TransformerEncoderLayer(d_model, num_heads, dim_feedforward=2048, dropout=dropout)
self.transformer_encoder = nn.TransformerEncoder(encoder_layer, num_layers)
self.fc_out = nn.Linear(d_model, output_dim)
def forward(self, x):
# x (batch_size, sequence_length)
x = self.embedding(x) * math.sqrt(self.d_model) # Scale the embeddings
x = self.positional_encoding(x)
x = self.transformer_encoder(x)
# Average pooling over the sequence dimension to get a single prediction for each sample
out = x.mean(dim=1)
return self.fc_out(out)
# 初始化模型实例
transformer = TransformerForTimeSeries(input_dim, output_dim)
```
在这个例子中,`input_dim`是你的时间序列特征数,`output_dim`是目标变量的维度。模型首先对输入进行嵌入和添加位置编码,然后通过多个Transformer编码层进行处理,最后通过全连接层生成预测。
阅读全文