> pred_svm_test <- predict(svm_model, adult1_test, type = 'response') Error in .local(object, ...) : test vector does not match model ! > ncol(adult1_test) [1] 15 > ncol(svm_model) NULL > colnames(adult1_test) [1] "age" "fnlwgt" "education.num" "capital.gain" [5] "capital.loss" "hours.per.week" "workclass" "education" [9] "marital.status" "occupation" "relationship" "race" [13] "sex" "native.country" "class" > colnames(svm_model) NULL
时间: 2023-07-21 19:02:13 浏览: 177
根据你提供的信息,问题出在模型对象 `svm_model` 上。`svm_model` 的列名和列数都是 NULL,这说明模型对象可能没有正确地保存列名和列数。
请确认在训练模型时是否正确地设置了列名和列数。在训练 SVM 模型之前,你可以执行以下代码来设置列名和列数:
```R
colnames(adult1_train) <- c("age", "fnlwgt", "education.num", "capital.gain", "capital.loss", "hours.per.week", "workclass", "education", "marital.status", "occupation", "relationship", "race", "sex", "native.country", "class")
svm_model <- svm(class ~ ., data = adult1_train)
```
确保训练模型时使用的训练数据集 `adult1_train` 具有正确的列名和列数。
如果问题仍然存在,请提供更多关于训练模型的代码和数据的细节,以便我可以帮助你进一步解决问题。
相关问题
pred_svm_test <- predict(svm_model, adult1_test, type = 'response') Error in .local(object, ...) : test vector does not match model ! > pred_svm_test <- predict(svm_model, type = 'response') > confusionMatrix(pred_svm_test, adult1_test$class) Error in table(data, reference, dnn = dnn, ...) : 所有参数的长度都应一致
这个错误是由于参数长度不一致引起的。在计算混淆矩阵时,你需要确保预测结果和实际类别的长度相同。根据你提供的错误信息,问题可能出在预测结果 `pred_svm_test` 和实际类别 `adult1_test$class` 的长度不一致。
请确保在使用 `predict()` 函数进行预测时,只传递测试数据,而不是训练数据。修改代码如下:
```R
pred_svm_test <- predict(svm_model, newdata = adult1_test, type = 'response')
```
然后,再次检查预测结果和实际类别的长度是否一致:
```R
length(pred_svm_test)
length(adult1_test$class)
```
如果它们的长度不一致,可能有其他问题导致预测结果和实际类别不匹配。请提供更多关于模型训练和预测过程的代码和数据的细节,以便我可以帮助你进一步解决问题。
library(kernlab) # ksvm() library(caret) # confusionMatrix # 建立支持向量机模型(kernel='rbfdot'指定使用径向基函数) set.seed(1234) #剔除变量fnlwgt,在训练集上训练 svm_model <- ksvm(class ~.-fnlwgt, data = adult1_train, kernel = 'rbfdot') pred_svm <- predict(svm_model, adult1_train, type = 'response') confusionMatrix(pred_svm, adult1_train$class) pred_svm_test <- predict(svm_model, adult1_test, type = 'response') confusionMatrix(pred_svm_test, adult1_test$class)
根据您提供的代码,您使用了`kernlab`和`caret`库来建立支持向量机模型,并使用径向基函数作为核函数。
在训练模型时,您剔除了变量`fnlwgt`。然后,您使用训练好的模型进行了预测,并计算了在训练集和测试集上的混淆矩阵。
根据您的代码,我注意到在进行预测之前缺少了一些代码行。以下是完整的代码:
```R
library(kernlab)
library(caret)
# 建立支持向量机模型(kernel='rbfdot'指定使用径向基函数)
set.seed(1234)
svm_model <- ksvm(class ~.-fnlwgt, data = adult1_train, kernel = 'rbfdot')
# 在训练集上进行预测
pred_svm <- predict(svm_model, adult1_train, type = 'response')
confusionMatrix(pred_svm, adult1_train$class)
# 在测试集上进行预测
pred_svm_test <- predict(svm_model, adult1_test, type = 'response')
confusionMatrix(pred_svm_test, adult1_test$class)
```
请确保在运行这段代码之前已经加载了`kernlab`和`caret`库,并且`adult1_train`和`adult1_test`是正确定义的数据集。
这样,您应该能够成功地进行训练和测试集上的预测,并计算混淆矩阵。如果问题仍然存在,请提供完整的错误消息和相关代码,以便我可以更好地帮助您解决问题。
阅读全文
相关推荐
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![rar](https://img-home.csdnimg.cn/images/20241231044955.png)
![rar](https://img-home.csdnimg.cn/images/20241231044955.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)