def create_LSTM_model(): # instantiate the model model = Sequential() model.add(Input(shape=(X_train.shape[1], X_train.shape[2]*5))) model.add(Reshape((X_train.shape[1], 1,X_train.shape[2], 5))) # cnn1d Layers model.add(ConvLSTM2D(filters=64, kernel_size=(1,3), activation='relu', padding='same', return_sequences=True)) model.add(Flatten()) model.add(Dropout(0.5)) model.add(RepeatVector(1)) # 添加lstm层 model.add(LSTM(64, activation = 'relu', return_sequences=True)) model.add(Dropout(0.5)) #添加注意力层 model.add(LSTM(64, activation = 'relu', return_sequences=False)) # 添加dropout model.add(Dropout(0.5)) model.add(Dense(128)) # 输出层 model.add(Dense(1, name='Output')) # 编译模型 model.compile(optimizer='adam', loss='mse', metrics=['mae']) return model # lstm network model = create_LSTM_model() # summary print(model.summary())修改该代码,解决ValueError: Input 0 of layer "sequential_76" is incompatible with the layer: expected shape=(None, 10, 5), found shape=(None, 10, 1, 1, 5)问题
时间: 2023-10-04 07:04:02 浏览: 148
可以通过将Reshape层的形状修改为`(X_train.shape[1], X_train.shape[2], 5)`来解决该问题。修改后的代码如下:
```
def create_LSTM_model():
# instantiate the model
model = Sequential()
model.add(Input(shape=(X_train.shape[1], X_train.shape[2]*5)))
model.add(Reshape((X_train.shape[1], X_train.shape[2], 5))) # 修改这一行
# cnn1d Layers
model.add(ConvLSTM2D(filters=64, kernel_size=(1,3), activation='relu', padding='same', return_sequences=True))
model.add(Flatten())
model.add(Dropout(0.5))
model.add(RepeatVector(1))
# 添加lstm层
model.add(LSTM(64, activation = 'relu', return_sequences=True))
model.add(Dropout(0.5))
#添加注意力层
model.add(LSTM(64, activation = 'relu', return_sequences=False))
# 添加dropout
model.add(Dropout(0.5))
model.add(Dense(128))
# 输出层
model.add(Dense(1, name='Output'))
# 编译模型
model.compile(optimizer='adam', loss='mse', metrics=['mae'])
return model
# lstm network
model = create_LSTM_model()
# summary
print(model.summary())
```
修改后,Reshape层会将输入形状从`(None, 10, 1, 1, 5)`转换为`(None, 10, 5)`,与模型其余部分的期望输入形状相匹配。
阅读全文