ID3算法的实现方法伪代码
时间: 2024-09-22 12:07:24 浏览: 61
机器学习决策树_ID3算法的源代码.pdf
ID3 (Iterative Dichotomiser 3) 算法是一种用于决策树学习的基础算法,主要用于分类任务。以下是ID3算法的一个简单伪代码实现:
```
function ID3(trainSet, attributes):
if trainSet is empty or all instances are classified:
return a leaf node with the majority class label
else:
best_attribute = find_best_split_attribute(trainSet, attributes)
if best_attribute is None:
return a leaf node with the majority class in trainSet
else:
subtree = {}
for attribute_value in best_attribute.domain:
subset = {instance where instance[best_attribute] == value}
subtree[attribute_value] = ID3(subset, remove_attribute(attributes, best_attribute))
return a decision node with attribute best_attribute and subtrees as values
function find_best_split_attribute(trainSet, attributes):
info_gain = -1
best_attribute = None
for attribute in attributes:
gain = calculate_information_gain(trainSet, attribute)
if gain > info_gain:
info_gain = gain
best_attribute = attribute
return best_attribute
function calculate_information_gain(trainSet, attribute):
impurity_before = entropy(trainSet)
subsets = partition_train_set_by_attribute(trainSet, attribute)
impurity_after = sum(entropy(subset) / len(subsets)) for subset in subsets
return impurity_before - impurity_after
function entropy(set):
# Calculate the entropy of the set
# (probability of each class * log2(probability of each class))
function partition_train_set_by_attribute(trainSet, attribute):
# Split the training set into subsets based on the given attribute
```
这个伪代码展示了从训练数据开始构建决策树的基本流程,包括寻找最佳划分属性、信息增益计算等关键步骤。注意实际应用中可能还需要处理缺失值、停止条件(如达到最大深度或所有实例纯化)以及一些优化措施。
阅读全文