opencvsharp NCC带角度
时间: 2023-08-02 18:11:18 浏览: 93
您好!对于OpenCvSharp库中的NCC(归一化互相关)算法,它通常用于在图像中寻找模板的匹配位置。NCC算法不直接支持角度的匹配,因为它是基于亮度信息进行匹配的。但是,您可以使用其他方法来实现带有角度的匹配,例如使用角度不变特征变换(SIFT)算法或速度变换(SURF)算法来提取特征并进行匹配。这些算法可以在OpenCvSharp库中找到相应的函数和类。希望对您有所帮助!如果还有其他问题,请随时提问。
相关问题
opencvsharp NCC匹配亚像素多线程
可以使用OpenCVSharp库中的cv::matchTemplate()函数进行NCC匹配,同时使用OpenCVSharp的多线程库进行并行计算。
以下是一个示例代码,可以使用OpenCVSharp进行NCC匹配,并使用多线程库进行并行计算:
```csharp
using System.Threading.Tasks;
using OpenCvSharp;
// 加载模板图像和待匹配图像
var templateImage = new Mat("template.png", ImreadModes.GrayScale);
var targetImage = new Mat("target.png", ImreadModes.GrayScale);
// 创建输出结果图像
var resultImage = new Mat(targetImage.Rows - templateImage.Rows + 1, targetImage.Cols - templateImage.Cols + 1, MatType.CV_32FC1);
// NCC匹配
Cv2.MatchTemplate(targetImage, templateImage, resultImage, TemplateMatchModes.CCoeffNormed);
// 获取最大匹配值和位置
double minValue, maxValue;
Point minLocation, maxLocation;
Cv2.MinMaxLoc(resultImage, out minValue, out maxValue, out minLocation, out maxLocation);
// 将匹配位置进行亚像素级别的精确计算
var halfSize = templateImage.Size() / 2;
var patch = new Mat(targetImage, new Rect(maxLocation - halfSize, templateImage.Size()));
var subPixelLocation = Cv2.MinMaxLoc(patch).MaxLoc + maxLocation - halfSize;
// 输出匹配结果
Console.WriteLine($"匹配位置:({maxLocation.X}, {maxLocation.Y})");
Console.WriteLine($"亚像素匹配位置:({subPixelLocation.X}, {subPixelLocation.Y})");
// 多线程计算
Parallel.For(0, resultImage.Rows, y =>
{
for (var x = 0; x < resultImage.Cols; x++)
{
// 计算每个像素点的值
var value = resultImage.At<float>(y, x);
// 对值进行处理
// ...
// 将处理后的值赋给输出结果图像
resultImage.Set(y, x, value);
}
});
```
在上述代码中,我们首先加载模板图像和待匹配图像,然后创建输出结果图像。接着,我们使用cv::matchTemplate()函数进行NCC匹配,并获取最大匹配值和位置。为了获得亚像素级别的精确匹配位置,我们计算匹配位置周围的一个小区域的最大值位置,然后将其作为亚像素匹配位置。最后,我们使用多线程库对输出结果图像进行并行计算。
opencvsharp 多线程NCC亚像素匹配
OpenCvSharp 是一个基于 OpenCV 的 C# 封装库,可以帮助开发者使用 C# 编写 OpenCV 应用程序。多线程 NCC 亚像素匹配可以提高匹配的速度和精度。以下是一个示例代码:
```csharp
using OpenCvSharp;
using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;
namespace OpenCvSharp_MultiThreaded_NCC_SubPixel_Matching
{
class Program
{
static void Main(string[] args)
{
Mat image1 = Cv2.ImRead("image1.png", ImreadModes.GrayScale);
Mat image2 = Cv2.ImRead("image2.png", ImreadModes.GrayScale);
// 创建输出图像
Mat result = Mat.Zeros(image1.Rows, image1.Cols, MatType.CV_32F);
// 定义块大小
int block_size = 21;
// 定义搜索范围
int search_range = 25;
// 定义阈值
double threshold = 0.98;
// 创建 NCCMatcher 对象
NccMatcher ncc_matcher = new NccMatcher(image1, block_size, search_range, threshold);
// 定义线程数
int num_threads = 4;
// 创建线程池
Task[] tasks = new Task[num_threads];
// 定义线程块大小
int block_height = image1.Rows / num_threads;
// 分配任务
for (int i = 0; i < num_threads; i++)
{
int start_row = i * block_height;
int end_row = (i == num_threads - 1) ? image1.Rows : (i + 1) * block_height;
tasks[i] = Task.Factory.StartNew(() => {
for (int row = start_row; row < end_row; row++)
{
for (int col = 0; col < image1.Cols; col++)
{
// 计算亚像素匹配
Point2f match_location = ncc_matcher.Match(image2, new Point2f(col, row));
// 设置匹配结果
result.At<float>(row, col) = match_location.X;
}
}
});
}
// 等待所有任务完成
Task.WaitAll(tasks);
// 显示结果
Cv2.ImShow("Result", result);
Cv2.WaitKey(0);
}
}
class NccMatcher
{
private Mat image1;
private int block_size;
private int search_range;
private double threshold;
public NccMatcher(Mat image1, int block_size, int search_range, double threshold)
{
this.image1 = image1;
this.block_size = block_size;
this.search_range = search_range;
this.threshold = threshold;
}
public Point2f Match(Mat image2, Point2f location)
{
// 定义搜索范围
Rect search_window = new Rect(
(int)(location.X - search_range / 2),
(int)(location.Y - search_range / 2),
search_range,
search_range);
// 检查搜索范围是否越界
search_window.X = Math.Max(search_window.X, 0);
search_window.Y = Math.Max(search_window.Y, 0);
search_window.Width = Math.Min(search_window.Width, image2.Cols - search_window.X);
search_window.Height = Math.Min(search_window.Height, image2.Rows - search_window.Y);
// 获取模板块
Mat template_block = image1.SubMat(
new Rect(
(int)(location.X - block_size / 2),
(int)(location.Y - block_size / 2),
block_size,
block_size));
// 初始化最大相关系数和匹配位置
double max_ncc = -1;
Point2f max_location = new Point2f(-1, -1);
// 遍历搜索范围
for (int row = search_window.Y; row < search_window.Y + search_window.Height - block_size; row++)
{
for (int col = search_window.X; col < search_window.X + search_window.Width - block_size; col++)
{
// 获取窗口块
Mat window_block = image2.SubMat(
new Rect(col, row, block_size, block_size));
// 计算 NCC
double ncc = CalculateNcc(template_block, window_block);
// 如果 NCC 大于阈值并且大于当前最大值,则更新最大值和最大位置
if (ncc > threshold && ncc > max_ncc)
{
max_ncc = ncc;
max_location.X = col + block_size / 2.0f;
max_location.Y = row + block_size / 2.0f;
}
}
}
return max_location;
}
private double CalculateNcc(Mat image1, Mat image2)
{
// 计算均值
Scalar mean1 = Cv2.Mean(image1);
Scalar mean2 = Cv2.Mean(image2);
// 计算标准差
Scalar std1, std2;
Cv2.MeanStdDev(image1, out mean1, out std1);
Cv2.MeanStdDev(image2, out mean2, out std2);
// 计算协方差矩阵
Mat covar = new Mat();
Cv2.CalcCovarMatrix(new Mat[] { image1, image2 }, covar, 0, CovarFlags.Normal | CovarFlags.Scale);
// 计算相关系数
double ncc = covar.At<double>(0, 1) / (std1.Val0 * std2.Val0);
return ncc;
}
}
}
```
在这个示例代码中,我们使用了多线程来加速 NCC 亚像素匹配。我们将图像分成若干个块,在不同的线程中处理不同的块。由于每个线程只处理一部分图像,因此可以大大提高匹配的速度。
阅读全文