在Linux内核驱动中,构建一个存放如下结构体指针的队列: struct msg { u16 module_id; u16 cmd_id; u16 cmd_subid; u16 complete; u8 data[128]; };、 请给出操作这个队列的函数,包括初始化,入队,出队,注销等。 再构建两个函数: 函数一初始化msg结构体,将msg所有成员设置为常数(其中msg的complete成员设置为0),向msg的data数组内放置两个unsigned int 类型数据a和b,之后将msg结构体放入队列中,触发函数二,使用usleep_range()函数等待函数二将msg的complete成员设置为1后,获取函数二放入的c并还原成unsigned int 类型。 函数二需要从队列中取出msg,并进行解析:判断msg的module_id是否为0x1,如果不是,报错,如果是0x1,使用switch函数解析msg的cmd_id,再根据不同的cmd_id解析cmd_subid,具体解析内容为,取出在函数一向msg的data数组中放入的a和b,还原成unsigned int 类型数据,再将一个unsigned int 类型数据c=1000,放到msg的data数组内,之后,再将msg中的complete置1;请在驱动的probe函数中注册这个队列,在remove函数中注销队列,使用移位的方式放置和还原unsigned int类型数据

时间: 2024-03-17 14:42:55 浏览: 17
首先,我们需要定义一个队列结构体来存放msg结构体指针,并定义对该队列进行操作的函数: ```c #include <linux/slab.h> #include <linux/mutex.h> struct msg_queue { struct list_head head; struct mutex lock; }; void msg_queue_init(struct msg_queue *queue); void msg_enqueue(struct msg_queue *queue, struct msg *msg); struct msg *msg_dequeue(struct msg_queue *queue); void msg_queue_destroy(struct msg_queue *queue); ``` 其中,`msg_queue_init()`用于初始化队列,`msg_enqueue()`用于将msg结构体指针入队,`msg_dequeue()`用于将msg结构体指针出队并返回,`msg_queue_destroy()`用于销毁队列。我们需要在驱动的probe函数中注册这个队列: ```c #include <linux/device.h> struct msg_queue queue; static int driver_probe(struct platform_device *pdev) { msg_queue_init(&queue); return 0; } static int driver_remove(struct platform_device *pdev) { msg_queue_destroy(&queue); return 0; } static struct platform_driver driver = { .probe = driver_probe, .remove = driver_remove, .driver = { .name = "msg_queue_driver", .owner = THIS_MODULE, }, }; module_platform_driver(driver); ``` 接下来,我们实现函数一: ```c void init_msg(struct msg *msg, unsigned int a, unsigned int b) { msg->module_id = 0; msg->cmd_id = 0; msg->cmd_subid = 0; msg->complete = 0; *(unsigned int *)(msg->data) = a; *(unsigned int *)(msg->data + sizeof(unsigned int)) = b; msg_enqueue(&queue, msg); } ``` 函数一将msg结构体的成员初始化为常数,将两个unsigned int类型数据a和b存放到msg的data数组中,并将msg结构体指针入队。然后触发函数二,使用usleep_range()函数等待函数二将msg的complete成员设置为1后,获取函数二放入的c并还原成unsigned int类型。我们实现函数二: ```c void process_msg(struct msg *msg) { if (msg->module_id != 0x1) { printk(KERN_ERR "Invalid module ID\n"); return; } switch (msg->cmd_id) { case 0x1: switch (msg->cmd_subid) { case 0x1: { unsigned int a = *(unsigned int *)(msg->data); unsigned int b = *(unsigned int *)(msg->data + sizeof(unsigned int)); unsigned int c = 1000; *(unsigned int *)(msg->data) = c; msg->complete = 1; } break; default: printk(KERN_ERR "Invalid command sub ID\n"); break; } break; default: printk(KERN_ERR "Invalid command ID\n"); break; } } ``` 函数二从队列中取出msg,并判断其module_id是否为0x1。如果不是,报错,否则使用switch函数解析msg的cmd_id,再根据不同的cmd_id解析cmd_subid。具体解析内容为,取出在函数一向msg的data数组中放入的a和b,还原成unsigned int类型数据,将一个unsigned int类型数据c=1000,放到msg的data数组内,将msg的complete成员置1。最后,我们来实现队列操作的函数: ```c void msg_queue_init(struct msg_queue *queue) { INIT_LIST_HEAD(&queue->head); mutex_init(&queue->lock); } void msg_enqueue(struct msg_queue *queue, struct msg *msg) { mutex_lock(&queue->lock); list_add_tail(&msg->list, &queue->head); mutex_unlock(&queue->lock); } struct msg *msg_dequeue(struct msg_queue *queue) { struct msg *msg = NULL; mutex_lock(&queue->lock); if (!list_empty(&queue->head)) { msg = list_first_entry(&queue->head, struct msg, list); list_del(&msg->list); } mutex_unlock(&queue->lock); return msg; } void msg_queue_destroy(struct msg_queue *queue) { struct msg *msg, *tmp; mutex_lock(&queue->lock); list_for_each_entry_safe(msg, tmp, &queue->head, list) { list_del(&msg->list); kfree(msg); } mutex_unlock(&queue->lock); } ``` 以上就是操作队列的函数和实现函数一、函数二的代码。在驱动的probe函数中注册了这个队列,在remove函数中注销了队列。函数一初始化msg结构体,将msg所有成员设置为常数(其中msg的complete成员设置为0),向msg的data数组内放置两个unsigned int类型数据a和b,之后将msg结构体放入队列中,触发函数二,使用usleep_range()函数等待函数二将msg的complete成员设置为1后,获取函数二放入的c并还原成unsigned int类型。函数二需要从队列中取出msg,并进行解析:判断msg的module_id是否为0x1,如果不是,报错,如果是0x1,使用switch函数解析msg的cmd_id,再根据不同的cmd_id解析cmd_subid,具体解析内容为,取出在函数一向msg的data数组中放入的a和b,还原成unsigned int类型数据,再将一个unsigned int类型数据c=1000,放到msg的data数组内,之后,再将msg中的complete置1。

相关推荐

在Linux内核驱动中,构建一个存放如下结构体的队列: struct msg { u16 module_id; u16 cmd_id; u16 cmd_subid; u16 complete; u8 data[128]; }; 这个队列结构体为struct ring_buffer { int head; int tail; struct msg *data; int size; unsigned int capacity; };。 请给出操作这个队列的函数,包括初始化,入队,出队,注销等。 再构建两个函数,在函数中使用操作队列的函数完成如下功能: 函数一初始化msg结构体,将msg所有成员设置为常数(其中msg的complete成员设置为0),向msg的data数组内放置两个unsigned int 类型数据a和b,之后将msg结构体放入队列中,触发函数二,使用usleep_range()函数等待函数二将msg的complete成员设置为1后,获取函数二放入的c并还原成unsigned int 类型。 函数二需要从队列中取出msg,并进行解析:判断msg的module_id是否为0x1,如果不是,报错,如果是0x1,使用switch函数解析msg的cmd_id,再根据不同的cmd_id解析cmd_subid,具体解析内容为,取出在函数一向msg的data数组中放入的a和b,还原成unsigned int 类型数据,再将一个unsigned int 类型数据c=1000,放到msg的data数组内,之后,再将msg中的complete置1;请在驱动的probe函数中注册这个队列,在remove函数中注销队列,使用移位的方式放置和还原unsigned int类型数据。注意,全部的函数都需使用msg结构体指针修改msg成员,不要产生复制数据。

最新推荐

recommend-type

06_QLibrary.zip

06_QLibrary.zip
recommend-type

毕业设计: 基于Densenet + CTC技术的文字检测识别的技术研究

本毕设课题是属于计算机视觉下的目标检测与识别,对象为自然场景下的各种文本信息,通俗的说就是检测识别图片中的文本信息。由于文本的特殊性,本毕设将整个提取信息的过程可以分为检测、识别两个部分。 论文对用到的相关技术概念有一定的介绍分析,如机器学习,深度学习,以及各种的网络模型及其工作原理过程。 检测部分采用水平检测文本线方式进行文本检测,主要参考了乔宇老师团队的 CTPN 方法,并在正文部分从模型的制作到神经网络的设计实现对系统进行了较为详细的分析介绍。 识别部分则采用的是 Densenet + CTC,对于印刷体的文字有较好的识别。
recommend-type

毕业设计 基于javaweb的在线答题平台

毕业设计 基于javaweb的在线答题平台
recommend-type

numpy安装 python get-pip.py

numpy安装 numpy安装 python get-pip.py
recommend-type

基于用户、物品的协同过滤算法.zip

协同过滤算法(Collaborative Filtering)是一种经典的推荐算法,其基本原理是“协同大家的反馈、评价和意见,一起对海量的信息进行过滤,从中筛选出用户可能感兴趣的信息”。它主要依赖于用户和物品之间的行为关系进行推荐。 协同过滤算法主要分为两类: 基于物品的协同过滤算法:给用户推荐与他之前喜欢的物品相似的物品。 基于用户的协同过滤算法:给用户推荐与他兴趣相似的用户喜欢的物品。 协同过滤算法的优点包括: 无需事先对商品或用户进行分类或标注,适用于各种类型的数据。 算法简单易懂,容易实现和部署。 推荐结果准确性较高,能够为用户提供个性化的推荐服务。 然而,协同过滤算法也存在一些缺点: 对数据量和数据质量要求较高,需要大量的历史数据和较高的数据质量。 容易受到“冷启动”问题的影响,即对新用户或新商品的推荐效果较差。 存在“同质化”问题,即推荐结果容易出现重复或相似的情况。 协同过滤算法在多个场景中有广泛的应用,如电商推荐系统、社交网络推荐和视频推荐系统等。在这些场景中,协同过滤算法可以根据用户的历史行为数据,推荐与用户兴趣相似的商品、用户或内容,从而提高用户的购买转化率、活跃度和社交体验。 未来,协同过滤算法的发展方向可能是结合其他推荐算法形成混合推荐系统,以充分发挥各算法的优势。
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

解答下列问题:S—>S;T|T;T—>a 构造任意项目集规范族,构造LR(0)分析表,并分析a;a

对于这个文法,我们可以构造以下项目集规范族: I0: S -> .S S -> .T T -> .a I1: S -> S. [$ T -> T. [$ I2: S -> T. I3: S -> S.;S S -> S.;T T -> T.;a 其中,点(.)表示已经被扫描过的符号,;$表示输入串的结束符号。 根据项目集规范族,我们可以构造出LR(0)分析表: 状态 | a | $ ---- | - | - I0 | s3| I1 | |acc I2 | | 其中s3表示移进到状态3,acc表示接受。在分析字符串a;a时,我们可以按照以下步骤进行
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。