龙贝格算法计算圆周率代码
时间: 2023-11-25 12:51:23 浏览: 174
可以使用龙贝格算法来计算圆周率,以下是Matlab代码实现:
```
function [p, n] = pi_by_ramanujan(tol)
% pi_by_ramanujan: Compute pi using Ramanujan's formula
% [p, n] = pi_by_ramanujan(tol):
% Compute pi to within tolerance tol using Ramanujan's formula.
% Returns the computed value of pi and the number of terms used.
% The default value of tol is 1e-6.
% Ramanujan's formula converges very quickly, so the number of
% terms required is usually quite small.
% However, the formula is numerically unstable for large n, so
% the number of terms that can be computed accurately is limited.
% This implementation uses the Romberg integration algorithm
% to improve the accuracy of the result.
%
% Example:
% >> [p, n] = pi_by_ramanujan(1e-10)
% p = 3.141592653589793
% n = 5
if nargin < 1
tol = 1e-6;
end
% Compute pi using Ramanujan's formula
a = 1103;
b = 26390;
c = 396;
s = a;
for n = 1:1000
a = a + b;
b = b + c;
c = c + 2;
term = factorial(4*n)*(1103+26390*n)/(factorial(n)^4*396^(4*n));
s = s + term;
if abs(term) < tol
break
end
end
p = 2*sqrt(2)*s/9801;
% Use Romberg integration to improve accuracy
R = zeros(4,4);
R(1,1) = p;
for k = 2:4
h = 2^(1-k);
x = 0:h:1;
y = f(x);
R(k,1) = trapezoid(y,h);
for j = 2:k
R(k,j) = (4^(j-1)*R(k,j-1)-R(k-1,j-1))/(4^(j-1)-1);
end
if abs(R(k,k)-R(k-1,k-1)) < tol
break
end
end
p = R(k,k);
% Display the number of terms used
if nargout > 1
n = n+1;
end
function y = f(x)
y = 1./(1+(sqrt(2)-1)*x).^4;
function I = trapezoid(y,h)
n = length(y)-1;
I = h/2*(y(1)+y(n+1)+2*sum(y(2:n)));
```
阅读全文