mini-batch gradient descent 代码实现
时间: 2023-09-07 20:01:45 浏览: 177
mini-batch gradient descent(小批量梯度下降)是梯度下降算法的一种变种,它在每个迭代步骤中计算部分训练样本的梯度,并更新模型权重。相比于批量梯度下降,mini-batch gradient descent具有更小的计算和内存需求,并且通常可以更快地找到较好的优化方向。
以下是mini-batch gradient descent的代码实现:
1. 初始化模型的权重和偏置。
2. 定义批量大小(batch_size),即每次更新模型参数时使用的样本数量。
3. 将训练集划分为大小为batch_size的小批量并进行迭代。
4. 对于每个小批量样本,计算其梯度。
5. 对于每个模型参数,使用计算得到的梯度和学习率来更新参数。
6. 重复步骤3-5,直到达到设定的迭代次数或收敛条件。
以下是一个简单的mini-batch gradient descent的Python代码示例:
```python
# 计算梯度
def calculate_gradient(X, y, weights):
# 根据模型参数计算预测值
y_pred = np.dot(X, weights)
# 计算预测误差
error = y_pred - y
# 计算梯度
gradient = np.dot(X.T, error) / len(X)
return gradient
# 更新模型参数
def update_weights(weights, gradient, learning_rate):
new_weights = weights - learning_rate * gradient
return new_weights
# mini-batch gradient descent
def mini_batch_gradient_descent(X, y, batch_size, learning_rate, num_iterations):
# 初始化模型参数
weights = np.zeros(X.shape[1])
# 迭代更新模型参数
for _ in range(num_iterations):
# 划分小批量样本
random_indices = np.random.choice(len(X), size=batch_size, replace=False)
X_batch = X[random_indices]
y_batch = y[random_indices]
# 计算梯度
gradient = calculate_gradient(X_batch, y_batch, weights)
# 更新模型参数
weights = update_weights(weights, gradient, learning_rate)
return weights
# 调用mini-batch gradient descent函数进行模型训练
weights = mini_batch_gradient_descent(X_train, y_train, batch_size=32, learning_rate=0.01, num_iterations=1000)
```
在上述代码中,`X`和`y`分别表示训练数据集和目标变量,`weights`为模型的参数,`batch_size`为批量大小,`learning_rate`为学习率,`num_iterations`为迭代次数。
在每次迭代中,算法会将训练数据集随机划分为大小为`batch_size`的小批量样本,然后根据这些小批量样本计算梯度,并使用学习率来更新模型参数。重复多次迭代后,算法将得到最优的模型参数。
阅读全文