详细证明,条理清晰:\nabla \times \left ( \nabla \Phi \right ) =0
时间: 2023-11-25 10:05:17 浏览: 122
根据矢量分析理论,对于任意标量场 $\Phi$,有以下恒等式成立:
$$\nabla \times \left ( \nabla \Phi \right ) = 0$$
证明如下:
首先,我们可以将 $\nabla \Phi$ 表示为一个向量场:
$$\nabla \Phi = \begin{pmatrix} \frac{\partial \Phi}{\partial x} \\ \frac{\partial \Phi}{\partial y} \\ \frac{\partial \Phi}{\partial z} \end{pmatrix}$$
然后,我们可以计算 $\nabla \times \left ( \nabla \Phi \right )$:
$$\nabla \times \left ( \nabla \Phi \right ) = \begin{pmatrix} \frac{\partial}{\partial x} \\ \frac{\partial}{\partial y} \\ \frac{\partial}{\partial z} \end{pmatrix} \times \begin{pmatrix} \frac{\partial \Phi}{\partial x} \\ \frac{\partial \Phi}{\partial y} \\ \frac{\partial \Phi}{\partial z} \end{pmatrix}$$
根据矢量分析理论,我们可以将上式展开为:
$$\nabla \times \left ( \nabla \Phi \right ) = \begin{pmatrix} \frac{\partial}{\partial x} \left ( \frac{\partial \Phi}{\partial z} \right ) - \frac{\partial}{\partial z} \left ( \frac{\partial \Phi}{\partial y} \right ) \\ \frac{\partial}{\partial z} \left ( \frac{\partial \Phi}{\partial x} \right ) - \frac{\partial}{\partial x} \left ( \frac{\partial \Phi}{\partial z} \right ) \\ \frac{\partial}{\partial x} \left ( \frac{\partial \Phi}{\partial y} \right ) - \frac{\partial}{\partial y} \left ( \frac{\partial \Phi}{\partial x} \right ) \end{pmatrix}$$
我们可以发现,上式中每一项都是一个偏导数的差值。因此,我们可以将其简化为:
$$\nabla \times \left ( \nabla \Phi \right ) = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$
因此,我们证明了 $\nabla \times \left ( \nabla \Phi \right ) = 0$。
阅读全文