详细计算,条理清晰:\nabla \times \left ( \nabla \Phi \right ) =?
根据矢量分析理论,可以将上式展开为: $$ \nabla \times \left ( \nabla \Phi \right ) = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \ \frac{\partial \Phi}{\partial x} & \frac{\partial \Phi}{\partial y} & \frac{\partial \Phi}{\partial z} \end{vmatrix} $$ 对上式进行计算,可以得到: $$ \nabla \times \left ( \nabla \Phi \right ) = \left ( \frac{\partial^2 \Phi}{\partial y \partial z} - \frac{\partial^2 \Phi}{\partial z \partial y} \right ) \hat{i} + \left ( \frac{\partial^2 \Phi}{\partial z \partial x} - \frac{\partial^2 \Phi}{\partial x \partial z} \right ) \hat{j} + \left ( \frac{\partial^2 \Phi}{\partial x \partial y} - \frac{\partial^2 \Phi}{\partial y \partial x} \right ) \hat{k} $$ 因此,$\nabla \times \left ( \nabla \Phi \right )$ 的结果为: $$ \nabla \times \left ( \nabla \Phi \right ) = \left ( \frac{\partial^2 \Phi}{\partial y \partial z} - \frac{\partial^2 \Phi}{\partial z \partial y} \right ) \hat{i} + \left ( \frac{\partial^2 \Phi}{\partial z \partial x} - \frac{\partial^2 \Phi}{\partial x \partial z} \right ) \hat{j} + \left ( \frac{\partial^2 \Phi}{\partial x \partial y} - \frac{\partial^2 \Phi}{\partial y \partial x} \right ) \hat{k} $$
相关推荐


















