如何解决这个错误· img = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) # 转灰度图 cv2.error: OpenCV(4.5.0-dev) /home/pi/opencv/modules/imgproc/src/color.cpp:182: error: (-215:Assertion failed) !_src.empty() in function 'cvtColor

时间: 2023-10-10 19:10:21 浏览: 199
这个错误说明在调用 `cv2.cvtColor` 函数时,输入的图像 `_src` 为空(即没有读取到图像数据)。解决这个错误的方法是确保你成功读取到了图像数据。 你可以检查以下几个方面: 1. 确保图像路径正确:检查你读取图像的路径是否正确,确保文件存在且路径正确。 2. 确保图像读取成功:在调用 `cv2.imread` 函数之后,可以通过检查返回的图像对象是否为空来判断图像是否成功读取。例如,你可以添加以下代码来检查: ```python frame = cv2.imread('path/to/image.jpg') if frame is None: print("Failed to read image") ``` 3. 检查图像数据类型:确保图像数据是正确的格式。`cv2.cvtColor` 函数要求输入的图像数据类型为 BGR 格式的图像。 4. 检查其他可能导致图像为空的问题:例如,可能是由于图像损坏或读取过程中出现了其他错误导致图像数据为空。 通过以上步骤检查并确保图像数据正确加载后,应该能够解决这个错误。如果问题仍然存在,请提供更多的代码和错误详细信息,以便我能够更好地帮助你解决问题。
相关问题

python cap.read() 图像帧 cv2.Canny(img, 40, 200)

`cap.read()` 是 OpenCV 库中用于读取视频帧的方法。当你初始化一个视频捕获对象 `cv2.VideoCapture()` 后,你可以使用 `.read()` 方法来逐帧读取视频内容。每次调用 `.read()` 方法时,它都会读取视频的下一帧,并且返回一个布尔值以及一个图像帧。布尔值表示是否成功读取到帧,图像帧则是实际的视频帧数据。 `cv2.Canny(img, 40, 200)` 是 OpenCV 中使用 Canny 边缘检测算法的一个函数调用。Canny 算法是一个多阶段的边缘检测算法,广泛用于图像处理中的边缘检测。这个函数需要三个参数: 1. `img`:待处理的图像,通常需要先转换为灰度图。 2. `40`:这个值是 Canny 算法中用于检测弱边缘的低阈值(low threshold)。 3. `200`:这个值是用于将弱边缘连接到强边缘的高阈值(high threshold)。 Canny 算法会返回一个二值图像,其中边缘位置被标记为白色(255),而非边缘区域为黑色(0)。 下面是一个简单的示例流程,展示了如何使用这些函数进行视频帧读取和边缘检测: ```python import cv2 # 初始化视频捕获对象 cap = cv2.VideoCapture('video.mp4') # 检查视频文件是否成功打开 if not cap.isOpened(): print("无法打开视频文件") exit() # 循环读取视频帧 while True: ret, frame = cap.read() # 如果正确读取帧,ret为True if not ret: print("无法读取视频帧") break # 将帧转换为灰度图 gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) # 使用 Canny 算法检测边缘 edges = cv2.Canny(gray, 40, 200) # 显示结果图像 cv2.imshow('Edges', edges) # 按 'q' 键退出循环 if cv2.waitKey(1) & 0xFF == ord('q'): break # 释放视频捕获对象和关闭所有窗口 cap.release() cv2.destroyAllWindows() ```

修改代码:def decodeDisplay(video, flag): global m_circle gay_img = cv2.cvtColor(video, cv2.COLOR_BGRA2GRAY) img = cv2.medianBlur(gay_img, 7) # 进行中值模糊,去噪点 cimg = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR) circles = cv2.HoughCircles(cimg, cv2.HOUGH_GRADIENT, 1, 50, param1=100, param2=50, minRadius=0, maxRadius=0) if circles is not None: m_circle = True # 关闭前处理 def manualcar_stop(signum, frame): global __isRunning print('关闭中...') __isRunning = False car.set_velocity(0, 90, 0) # 关闭所有电机 if __name__ == '__main__': global num init() start() camera = Camera.Camera() camera.camera_open(correction=True) # 开启畸变矫正,默认不开启 signal.signal(signal.SIGINT, manualcar_stop) while __isRunning: img = camera.frame if img is not None: frame = img.copy() Frame = run(frame) frame_resize = cv2.resize(Frame, (320, 240)) cv2.imshow('frame', frame_resize) key = cv2.waitKey(1) key = decodeDisplay(frame_resize, key) if key == 27: break else: time.sleep(0.01) camera.camera_close() cv2.destroyAllWindows()

根据您提供的代码,我注意到了一些问题。请尝试以下修改: 1. 在`decodeDisplay`函数中,将`cv2.Houghcircles`改为`cv2.HoughCircles`,以匹配正确的函数名称。 2. 检查`cv2.resize`函数中的图像尺寸是否正确。确保目标尺寸`(320, 240)`与您期望的一致。 3. 在`decodeDisplay`函数中,将`parm2`更正为`param2`,以修复参数名称的错误。 4. 在`decodeDisplay`函数中,将变量名`m_circle`更正为`m_circles`,以匹配代码中的其他部分。 5. 确保您已导入所需的模块,如`cv2`、`time`、`signal`等。 请注意仔细检查您的代码并进行相应的修改。如果问题仍然存在,请提供完整的错误信息和上下文,以便我能够更好地帮助您。
阅读全文

相关推荐

回答一下代码:import numpy as np import cv2 import Products as product # 加载视频 cap = cv2.VideoCapture("../sample/1.mp4") # 变量 font = cv2.FONT_HERSHEY_SIMPLEX products = [] pid = 1 areaTh = 18000 # 获取图像width, height width = cap.get(3) height = cap.get(3) while cap.isOpened(): ret, frame = cap.read() try: # 复制图片,用于绘制 img = frame.copy() gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) thresh = cv2.threshold(gray, 127, 255, cv2.THRESH_BINARY)[1] except: print("EOF") break # 边缘检测,识别工件 contours, hierarchy = cv2.findContours(thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE) for cnt in contours: area = cv2.contourArea(cnt) if area > areaTh: M = cv2.moments(cnt) cx = int(M['m10'] / M['m00']) cy = int(M['m01'] / M['m00']) x, y, w, h = cv2.boundingRect(cnt) new = True if cx > 100: for i in products: if abs(cx - i.getX()) <= 25 and abs(cy - i.getY()) <= 25: new = False i.updateCoords(cx, cy, x, y, w, h) if new: p = product.Product(pid, cx, cy, x, y, w, h) p.save_pic(frame) products.append(p) product.count = pid defects = p.defect_detect() pid += 1 cv2.circle(img, (cx, cy), 5, (0, 0, 255), -1) img = cv2.rectangle(img, (x, y), (x + w, y + h), (0, 255, 0), 2) for i in products: # 标记ID if i.getX() <= 600: cv2.putText(img, str(i.getId()), (i.getX(), i.getY()), font, 1.0, i.getRGB(), 1, cv2.LINE_AA) # 绘制缺陷 for j in i.defects: if j.getState() == 1: img = cv2.rectangle(img, (i.getBoundX() + j.getX(), i.getBoundY() + j.getY()), (i.getBoundX() + j.getX() + j.getW() + 5, i.getBoundY() + j.getY() + j.getH() + 5), (0, 255, 255), 1) elif j.getState() == 2: img = cv2.rectangle(img, (i.getBoundX() + j.getX(), i.getBoundY() + j.getY()), (i.getBoundX() + j.getX() + j.getW() + 5, i.getBoundY() + j.getY() + j.getH() + 5), (255, 255, 0), 1) # 绘制sum cv2.putText(img, "sum:" + str(product.count), (10, 30), font, 0.7, (255, 255, 255), 1, cv2.LINE_AA) cv2.putText(img, "scratch_sum:" + str(product.Product.scratch_sum), (10, 50), font, 0.7, (0, 255, 255), 1, cv2.LINE_AA) cv2.putText(img, "blot_sum:" + str(product.Product.blot_sum), (10, 70), font, 0.7, (255, 255, 0), 1, cv2.LINE_AA) cv2.imshow("test", img) k = cv2.waitKey(10) & 0xff if k == 27: break cv2.destroyAllWindows()

a = Kinect() cv.namedWindow("color_now", cv.WINDOW_NORMAL) cv.resizeWindow("color_now", int(a.w_color/3), int(a.h_color/3)) cv.moveWindow("color_now", 0, 0) cv.namedWindow("frame", cv.WINDOW_NORMAL) cv.resizeWindow("frame", int(a.w_color/3), int(a.h_color/3)) cv.moveWindow("frame", int(a.w_color/3), 0) cv.namedWindow("track", cv.WINDOW_NORMAL) cv.resizeWindow("track", int(a.w_color/3), int(a.h_color/3)) cv.moveWindow("track", int(a.w_color/3), int(a.h_color/3)) cv.namedWindow("obj", cv.WINDOW_NORMAL) cv.resizeWindow("obj", int(a.w_color/3), int(a.h_color/3)) cv.moveWindow("obj", int(a.w_color/3), int(a.h_color/3)+300) cv.namedWindow("console", cv.WINDOW_NORMAL) cv.resizeWindow("console", 400, 400) cv.moveWindow("console", 400, 400) def move_grand(x): global grand grand=x cv.createTrackbar('grand','console',950,1079,move_grand) def move_startline(x): global startline startline=x cv.createTrackbar('startline','console',1250,1919,move_startline) def move_x0(x): global x0 x0=x cv.createTrackbar('x0','console',200,1079,move_x0) def move_x1(x): global x1 x1=x cv.createTrackbar('x1','console',800,1079,move_x1) def move_y0(x): global y0 y0=x cv.createTrackbar('y0','console',1300,1919,move_y0) def move_y1(x): global y1 y1=x cv.createTrackbar('y1','console',1600,1919,move_y1) while 1: flag = 1 track = np.zeros((1080, 1920), np.uint8) while 1: a.get_the_last_color() a.get_the_last_depth() if flag: print("按下b键开始处理视频流") img=a.color_frame.copy() gray0 = cv.cvtColor(img, cv.COLOR_BGR2GRAY) #实时彩色视频流 draw_grand_and_start_lines(img,grand,startline) draw_depth_caculate_area(img,x0,y0,x1,y1) draw_points_depth_value(img,a.depth_ori) cv.imshow('color_now', img) #按b开始处理视频流 if cv.waitKey(1) & 0xFF == ord('b'): depth0 = a.depth_ori flag = 0 else: print("帧间差分中,按n结束帧间差分") img=a.color_frame.copy() #处理彩色帧,变成二值帧 frame = colorframe_to_frame(img) cv.imshow('frame',frame) #叠加 track = cv.bitwise_or(track,frame) cv.imshow('track',track) #实时彩色视频流 draw_grand_and_start_lines(img,grand,startline) draw_depth_caculate_area(img,x0,y0,x1,y1) draw_points_depth_value(img,a.depth_ori) cv.imshow('color_now', img) #按n结束读入视频流,开始对track进行处理 if cv.waitKey(1) & 0xFF == ord('n'): break track_3color=cv.cvtColor(track,cv.COLOR_GRAY2BGR) height,progressed_track= track_progress(track,track_3color,grand,startline) depth = averge_depth(depth0,x0,y0,x1,y1) print("height=",height,"depth=",depth) cv.imshow('track',progressed_track) cv.imshow('obj',track_3color) real_height=get_real_hight(height,depth) print("估计发球高度为{}mm".format(real_height)) print("按C继续,按任意键退出") #按c进行下一轮判断,按其它键退出程序 if cv.waitKey(0) & 0xFF == ord('c'): continue else: break

最新推荐

recommend-type

基于FPGA的智能车牌检测系统设计与实现

内容概要:本文介绍了一种基于FPGA的智能车牌检测系统。该系统采用了OV5640摄像头进行图像采集,通过FPGA集成化开发环境进行图像处理,主要包括图像格式转换、图像灰度化、图像增强、边缘检测、腐蚀膨胀、投影定位等技术步骤。该系统能够在复杂环境中快速实现车牌的图像采集及定位,提高了车牌检测的效率和准确性。 适合人群:具备一定嵌入式系统和图像处理基础的研究人员和技术人员。 使用场景及目标:适用于智慧交通管理系统,尤其是停车场、高速公路、智能制造等领域,主要用于实现实时的车牌检测与识别。 其他说明:系统采用Sobel算子进行边缘检测,中值滤波进行图像增强,投影定位确定车牌位置,整体处理效率较高,适用于复杂光照条件下的车牌检测。
recommend-type

【java毕业设计】springbootJava学生选课系统(springboot+vue+mysql+说明文档).zip

项目经过测试均可完美运行! 环境说明: 开发语言:java 框架:ssm jdk版本:jdk1.8 数据库:mysql 5.7+ 数据库工具:Navicat11+ 管理工具:maven 开发工具:idea/eclipse 部署容器:tomcat7+
recommend-type

Fisher Iris Setosa数据的主成分分析及可视化- Matlab实现

资源摘要信息: "该文档提供了一段关于在MATLAB环境下进行主成分分析(PCA)的代码,该代码针对的是著名的Fisher的Iris数据集(Iris Setosa部分),生成的输出包括帕累托图、载荷图和双图。Iris数据集是一个常用的教学和测试数据集,包含了150个样本的4个特征,这些样本分别属于3种不同的Iris花(Setosa、Versicolour和Virginica)。在这个特定的案例中,代码专注于Setosa这一种类的50个样本。" 知识点详细说明: 1. 主成分分析(PCA):PCA是一种统计方法,它通过正交变换将一组可能相关的变量转换为一组线性不相关的变量,这些新变量称为主成分。PCA在降维、数据压缩和数据解释方面非常有用。它能够将多维数据投影到少数几个主成分上,以揭示数据中的主要变异模式。 2. Iris数据集:Iris数据集由R.A.Fisher在1936年首次提出,包含150个样本,每个样本有4个特征:萼片长度、萼片宽度、花瓣长度和花瓣宽度。每个样本都标记有其对应的种类。Iris数据集被广泛用于模式识别和机器学习的分类问题。 3. MATLAB:MATLAB是一个高性能的数值计算和可视化软件,广泛用于工程、科学和数学领域。它提供了大量的内置函数,用于矩阵运算、函数和数据分析、算法开发、图形绘制和用户界面构建等。 4. 帕累托图:在PCA的上下文中,帕累托图可能是指对主成分的贡献度进行可视化,从而展示各个特征在各主成分上的权重大小,帮助解释主成分。 5. 载荷图:载荷图在PCA中显示了原始变量与主成分之间的关系,即每个主成分中各个原始变量的系数(载荷)。通过载荷图,我们可以了解每个主成分代表了哪些原始特征的信息。 6. 双图(Biplot):双图是一种用于展示PCA结果的图形,它同时显示了样本点和变量点。样本点在主成分空间中的位置表示样本的主成分得分,而变量点则表示原始变量在主成分空间中的载荷。 7. MATLAB中的标签使用:在MATLAB中,标签(Label)通常用于标记图形中的元素,比如坐标轴、图例、文本等。通过使用标签,可以使图形更加清晰和易于理解。 8. ObsLabels的使用:在MATLAB中,ObsLabels用于定义观察对象的标签。在绘制图形时,可以通过ObsLabels为每个样本点添加文本标签,以便于识别。 9. 导入Excel数据:MATLAB提供了工具和函数,用于将Excel文件中的数据导入到MATLAB环境。这对于分析存储在Excel表格中的数据非常有用。 10. 压缩包子文件:这里的"压缩包子文件"可能是一个误译或者打字错误,实际上应该是指一个包含代码的压缩文件包(Zip file)。文件名为PCA_IrisSetosa_sep28_1110pm.zip,表明这是一个包含了PCA分析Iris Setosa数据集的MATLAB代码压缩包,创建时间为2021年9月28日晚上11点10分。 代码可能包含的步骤和操作包括: - 加载数据:从Excel表格中读取数据。 - 数据预处理:为数据点编号,准备标签。 - PCA计算:执行PCA算法,得到特征向量和特征值。 - 结果可视化:使用MATLAB的绘图函数绘制帕累托图、载荷图和双图。 - 标签应用:在图形中用标签标记样本点。 - 代码改进:寻求方法将样本编号与双图中的符号同时显示。 这段代码为数据科学家和学生提供了一个很好的PCA应用实例,有助于深入理解PCA的实际应用以及如何在MATLAB中进行数据分析和可视化。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【R语言深度学习】:keras和tensorflow带你进入AI世界

![【R语言深度学习】:keras和tensorflow带你进入AI世界](https://opengraph.githubassets.com/efb880e2026ddff3141a65a02e45b2d2498440e1920a6f7f26bd41f37f0108db/claCase/Classification-with-Keras-in-R) # 1. 深度学习与AI简介 深度学习作为人工智能(AI)的一个重要分支,近年来在图像识别、语音处理、自然语言处理等领域取得了重大突破。本章将对深度学习的概念进行概述,并解释它与传统机器学习的区别,最后展望AI技术的发展趋势及挑战。 ##
recommend-type

如何使用C语言中的分支结构(如if-else语句)来比较两个整数x和y,并根据比较结果按从小到大的顺序输出他们的值

在C语言中,你可以使用if-else语句结合条件运算符(?:)来比较两个整数x和y并按照指定的顺序输出。以下是一个简单的示例: ```c #include <stdio.h> int main() { int x, y; // 假设已经给x和y赋了值 if (x <= y) { // 如果x小于等于y printf("The smaller number is: %d\n", x); } else { // 否则 printf("The smaller number is: %d\n", y); // 输出较大的数 }
recommend-type

深入理解JavaScript类与面向对象编程

资源摘要信息:"JavaScript-Classes-OOP" JavaScript中的类是自ES6(ECMAScript 2015)引入的特性,它提供了一种创建构造函数和对象的新语法。类可以看作是创建和管理对象的蓝图或模板。JavaScript的类实际上是基于原型继承的语法糖,这使得基于原型的继承看起来更像传统的面向对象编程(OOP)语言,如Java或C++。 面向对象编程(OOP)是一种编程范式,它使用“对象”来设计应用和计算机程序。在OOP中,对象可以包含数据和代码,这些代码称为方法。对象中的数据通常被称为属性。OOP的关键概念包括类、对象、继承、多态和封装。 JavaScript类的创建和使用涉及以下几个关键点: 1. 类声明和类表达式:类可以通过类声明和类表达式两种形式来创建。类声明使用`class`关键字,后跟类名。类表达式可以是命名的也可以是匿名的。 ```javascript // 类声明 class Rectangle { constructor(height, width) { this.height = height; this.width = width; } } // 命名类表达式 const Square = class Square { constructor(sideLength) { this.sideLength = sideLength; } }; ``` 2. 构造函数:在JavaScript类中,`constructor`方法是一个特殊的方法,用于创建和初始化类创建的对象。一个类只能有一个构造函数。 3. 继承:继承允许一个类继承另一个类的属性和方法。在JavaScript中,可以使用`extends`关键字来创建一个类,该类继承自另一个类。被继承的类称为超类(superclass),继承的类称为子类(subclass)。 ```javascript class Animal { constructor(name) { this.name = name; } speak() { console.log(`${this.name} makes a noise.`); } } class Dog extends Animal { speak() { console.log(`${this.name} barks.`); } } ``` 4. 类的方法:在类内部可以定义方法,这些方法可以直接写在类的主体中。类的方法可以使用`this`关键字访问对象的属性。 5. 静态方法和属性:在类内部可以定义静态方法和静态属性。这些方法和属性只能通过类本身来访问,而不能通过实例化对象来访问。 ```javascript class Point { constructor(x, y) { this.x = x; this.y = y; } static distance(a, b) { const dx = a.x - b.x; const dy = a.y - b.y; return Math.sqrt(dx * dx + dy * dy); } } const p1 = new Point(5, 5); const p2 = new Point(10, 10); console.log(Point.distance(p1, p2)); // 输出:7.071... ``` 6. 使用new关键字创建实例:通过使用`new`关键字,可以基于类的定义创建一个新对象。 ```javascript const rectangle = new Rectangle(20, 10); ``` 7. 类的访问器属性:可以为类定义获取(getter)和设置(setter)访问器属性,允许你在获取和设置属性值时执行代码。 ```javascript class Temperature { constructor(celsius) { this.celsius = celsius; } get fahrenheit() { return this.celsius * 1.8 + 32; } set fahrenheit(value) { this.celsius = (value - 32) / 1.8; } } ``` JavaScript类和OOP的概念不仅限于上述这些,还包括如私有方法和属性、类字段(字段简写和计算属性名)等其他特性。这些特性有助于实现封装、信息隐藏等面向对象的特性,使得JavaScript的面向对象编程更加灵活和强大。随着JavaScript的发展,类和OOP的支持在不断地改进和增强,为开发者提供了更多编写高效、可维护和可扩展代码的工具。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

R语言大数据处理:高效管理大规模数据的data.table技巧

![R语言大数据处理:高效管理大规模数据的data.table技巧](https://astrobiomike.github.io/images/R_tab_index_1.png) # 1. R语言与大数据的交汇点 在数据科学领域,R语言是分析和可视化的强大工具,而大数据则代表着数据处理与存储的新纪元。R语言在大数据场景中的应用变得越来越广泛,尤其是在统计分析、数据建模和机器学习等任务中。随着数据集的大小日益增长,对数据处理的效率和可扩展性要求也越来越高。传统上,R语言在处理大规模数据集时可能面临内存限制和其他性能问题。然而,随着data.table包的出现,R语言用户现在能够以一种前所未
recommend-type

如何使用java poi来读取Word文档中的序号数据?

使用Java的Apache POI库来读取Word文档(.docx文件)中的序号数据需要进行几个步骤: 1. **添加依赖**:首先,你需要将Apache POI库添加到你的项目中。如果你使用Maven,可以在pom.xml文件中加入以下依赖: ```xml <dependency> <groupId>org.apache.poi</groupId> <artifactId>poi-ooxml</artifactId> <version>5.0.0</version> <!-- 更新到最新的稳定版本 --> </dependency> ``` 2. **创建`XWP