java深度优先搜索遍历

时间: 2023-11-14 21:02:13 浏览: 36
深度优先搜索(DFS)是一种图遍历算法,用于访问和遍历图中的节点。在Java中,可以使用递归来实现深度优先搜索。基本思想是从初始节点开始,首先访问该节点,然后再递归地访问该节点的第一个邻接节点,直到到达没有未访问邻接节点的节点为止。然后回溯到上一个节点,继续访问该节点的其他未访问邻接节点,直到遍历完所有节点。 以下是Java中深度优先搜索的伪代码: ```java // 用于标记节点是否已经访问过 boolean[] visited; // 深度优先搜索函数 void dfs(int node) { // 标记当前节点为已访问 visited[node] = true; // 访问当前节点 // 遍历当前节点的邻接节点 for (int neighbor : graph[node]) { // 如果邻接节点未被访问,则递归调用深度优先搜索 if (!visited[neighbor]) { dfs(neighbor); } } } // 在主程序中调用深度优先搜索 void main() { // 初始化visited数组 visited = new boolean[numNodes]; // 从起始节点开始进行深度优先搜索 dfs(startNode); } ```
相关问题

java 二叉树深度优先遍历

Java实现二叉树的深度优先遍历可以使用递归或者栈来实现。递归方法比较简单,可以按照先序遍历、中序遍历和后序遍历的方式进行深度优先遍历。下面是一段示例代码,演示了Java中使用递归实现深度优先遍历的方法: ``` public class BinaryTree { // 定义二叉树节点类 public class TreeNode { public TreeNode leftNode; public TreeNode rightNode; public Integer val; public TreeNode(Integer val) { this.val = val; } } // 深度优先遍历-先序遍历 public void startErgodic(TreeNode node) { if (node == null) { return; } System.out.print(node.val + " "); startErgodic(node.leftNode); startErgodic(node.rightNode); } // 深度优先遍历-中序遍历 public void midErgodic(TreeNode node) { if (node == null) { return; } midErgodic(node.leftNode); System.out.print(node.val + " "); midErgodic(node.rightNode); } // 深度优先遍历-后序遍历 public void endErgodic(TreeNode node) { if (node == null) { return; } endErgodic(node.leftNode); endErgodic(node.rightNode); System.out.print(node.val + " "); } // 二叉树的插入操作 public void insert(Integer val) { // 插入操作的具体实现代码 } // 二叉树的递归插入操作 public void insertDigui(Integer val, TreeNode node) { // 递归插入操作的具体实现代码 } // 广度优先遍历 public void Order() { // 广度优先遍历的具体实现代码 } } public class Test { public static void main(String[] args) { BinaryTree binaryTree = new BinaryTree(); // 创建二叉树并进行插入操作 // 深度优先遍历-先序遍历 binaryTree.startErgodic(binaryTree.root); System.out.println(); // 深度优先遍历-中序遍历 binaryTree.midErgodic(binaryTree.root); System.out.println(); // 深度优先遍历-后序遍历 binaryTree.endErgodic(binaryTree.root); } } ``` 上述代码中的`startErgodic()`方法实现了二叉树的深度优先遍历先序遍历,`midErgodic()`方法实现了中序遍历,`endErgodic()`方法实现了后序遍历。可以根据需要选择相应的方法进行遍历。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* [Java实现二叉树的深度优先遍历和广度优先遍历算法示例](https://download.csdn.net/download/weixin_38518885/12761000)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"] - *2* *3* [java有序二叉树的深度优先遍历和广度优先遍历](https://blog.csdn.net/m566666/article/details/122280365)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"] [ .reference_list ]

java深度优先遍历

Java中的深度优先遍历(Depth-First Search,简称DFS)是一种用于图或树的遍历算法。下面是一个使用递归实现深度优先遍历的示例代码: ```java import java.util.ArrayList; import java.util.List; class Graph { private int vertices; private List<List<Integer>> adjList; public Graph(int vertices) { this.vertices = vertices; adjList = new ArrayList<>(vertices); for (int i = 0; i < vertices; i++) { adjList.add(new ArrayList<>()); } } public void addEdge(int source, int destination) { adjList.get(source).add(destination); } private void dfsUtil(int v, boolean[] visited) { visited[v] = true; System.out.print(v + " "); for (int neighbor : adjList.get(v)) { if (!visited[neighbor]) { dfsUtil(neighbor, visited); } } } public void DFS(int startVertex) { boolean[] visited = new boolean[vertices]; dfsUtil(startVertex, visited); } } public class Main { public static void main(String[] args) { Graph graph = new Graph(5); graph.addEdge(0, 1); graph.addEdge(0, 2); graph.addEdge(1, 3); graph.addEdge(1, 4); System.out.println("Depth-First Traversal (starting from vertex 0):"); graph.DFS(0); } } ``` 在上述代码中,我们首先定义了一个Graph类来表示图。构造函数中初始化了邻接表和顶点数。addEdge方法用于添加边。 在dfsUtil方法中,我们使用了递归来进行深度优先遍历。我们首先将当前顶点标记为已访问,并打印该顶点。然后递归遍历该顶点的所有未访问过的邻居。 最后,在main方法中创建一个Graph对象,并添加边。然后调用DFS方法来开始深度优先遍历。 输出结果为:0 1 3 4 2,表示从顶点0开始的深度优先遍历路径。 希望这个示例能够帮助你理解Java中的深度优先遍历。如有疑问,请随时提问。

相关推荐

最新推荐

recommend-type

图的创立数据结构对其进行深度优先遍历和广度优先遍历

无向图的连接表存储结构的创建...从编号为v的顶点出发,深度优先遍历图的算法 对具有G.vexnum个顶点的图的深度优先遍历的算法 从图G的v顶点出发,广度优先遍历图的算法 对具有G.vexnum个顶点的图的广度优先遍历的算法
recommend-type

RTL8188FU-Linux-v5.7.4.2-36687.20200602.tar(20765).gz

REALTEK 8188FTV 8188eus 8188etv linux驱动程序稳定版本, 支持AP,STA 以及AP+STA 共存模式。 稳定支持linux4.0以上内核。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

:YOLOv1目标检测算法:实时目标检测的先驱,开启计算机视觉新篇章

![:YOLOv1目标检测算法:实时目标检测的先驱,开启计算机视觉新篇章](https://img-blog.csdnimg.cn/img_convert/69b98e1a619b1bb3c59cf98f4e397cd2.png) # 1. 目标检测算法概述 目标检测算法是一种计算机视觉技术,用于识别和定位图像或视频中的对象。它在各种应用中至关重要,例如自动驾驶、视频监控和医疗诊断。 目标检测算法通常分为两类:两阶段算法和单阶段算法。两阶段算法,如 R-CNN 和 Fast R-CNN,首先生成候选区域,然后对每个区域进行分类和边界框回归。单阶段算法,如 YOLO 和 SSD,一次性执行检
recommend-type

设计算法实现将单链表中数据逆置后输出。用C语言代码

如下所示: ```c #include <stdio.h> #include <stdlib.h> // 定义单链表节点结构体 struct node { int data; struct node *next; }; // 定义单链表逆置函数 struct node* reverse(struct node *head) { struct node *prev = NULL; struct node *curr = head; struct node *next; while (curr != NULL) { next
recommend-type

c++校园超市商品信息管理系统课程设计说明书(含源代码) (2).pdf

校园超市商品信息管理系统课程设计旨在帮助学生深入理解程序设计的基础知识,同时锻炼他们的实际操作能力。通过设计和实现一个校园超市商品信息管理系统,学生掌握了如何利用计算机科学与技术知识解决实际问题的能力。在课程设计过程中,学生需要对超市商品和销售员的关系进行有效管理,使系统功能更全面、实用,从而提高用户体验和便利性。 学生在课程设计过程中展现了积极的学习态度和纪律,没有缺勤情况,演示过程流畅且作品具有很强的使用价值。设计报告完整详细,展现了对问题的深入思考和解决能力。在答辩环节中,学生能够自信地回答问题,展示出扎实的专业知识和逻辑思维能力。教师对学生的表现予以肯定,认为学生在课程设计中表现出色,值得称赞。 整个课程设计过程包括平时成绩、报告成绩和演示与答辩成绩三个部分,其中平时表现占比20%,报告成绩占比40%,演示与答辩成绩占比40%。通过这三个部分的综合评定,最终为学生总成绩提供参考。总评分以百分制计算,全面评估学生在课程设计中的各项表现,最终为学生提供综合评价和反馈意见。 通过校园超市商品信息管理系统课程设计,学生不仅提升了对程序设计基础知识的理解与应用能力,同时也增强了团队协作和沟通能力。这一过程旨在培养学生综合运用技术解决问题的能力,为其未来的专业发展打下坚实基础。学生在进行校园超市商品信息管理系统课程设计过程中,不仅获得了理论知识的提升,同时也锻炼了实践能力和创新思维,为其未来的职业发展奠定了坚实基础。 校园超市商品信息管理系统课程设计的目的在于促进学生对程序设计基础知识的深入理解与掌握,同时培养学生解决实际问题的能力。通过对系统功能和用户需求的全面考量,学生设计了一个实用、高效的校园超市商品信息管理系统,为用户提供了更便捷、更高效的管理和使用体验。 综上所述,校园超市商品信息管理系统课程设计是一项旨在提升学生综合能力和实践技能的重要教学活动。通过此次设计,学生不仅深化了对程序设计基础知识的理解,还培养了解决实际问题的能力和团队合作精神。这一过程将为学生未来的专业发展提供坚实基础,使其在实际工作中能够胜任更多挑战。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

:YOLO目标检测算法的挑战与机遇:数据质量、计算资源与算法优化,探索未来发展方向

![:YOLO目标检测算法的挑战与机遇:数据质量、计算资源与算法优化,探索未来发展方向](https://img-blog.csdnimg.cn/7e3d12895feb4651b9748135c91e0f1a.png?x-oss-process=image/watermark,type_ZHJvaWRzYW5zZmFsbGJhY2s,shadow_50,text_Q1NETiBA5rKJ6YaJ77yM5LqO6aOO5Lit,size_20,color_FFFFFF,t_70,g_se,x_16) # 1. YOLO目标检测算法简介 YOLO(You Only Look Once)是一种
recommend-type

在xlwings里.循环读取A列和B列的数据。当A列某单元格值等于特品,且同行B列单元格值等于热销品时。在同行的C列单元格输出值999。这代码怎么写

您好!感谢您对ChitGPT的使用! 为了回答您的问题,您可以使用xlwings的API和Excel公式配合完成以下任务: ``` import xlwings as xw wb = xw.Book('workbook.xlsx') # 打开工作簿 sht = wb.sheets['Sheet1'] # 打开工作表 # 遍历A列和B列数据 for i in range(1, sht.range('A' + str(sht.cells.last_cell.row)).end('up').row + 1): if sht.range(f'A{i}').value == '特品'
recommend-type

建筑供配电系统相关课件.pptx

建筑供配电系统是建筑中的重要组成部分,负责为建筑内的设备和设施提供电力支持。在建筑供配电系统相关课件中介绍了建筑供配电系统的基本知识,其中提到了电路的基本概念。电路是电流流经的路径,由电源、负载、开关、保护装置和导线等组成。在电路中,涉及到电流、电压、电功率和电阻等基本物理量。电流是单位时间内电路中产生或消耗的电能,而电功率则是电流在单位时间内的功率。另外,电路的工作状态包括开路状态、短路状态和额定工作状态,各种电气设备都有其额定值,在满足这些额定条件下,电路处于正常工作状态。而交流电则是实际电力网中使用的电力形式,按照正弦规律变化,即使在需要直流电的行业也多是通过交流电整流获得。 建筑供配电系统的设计和运行是建筑工程中一个至关重要的环节,其正确性和稳定性直接关系到建筑物内部设备的正常运行和电力安全。通过了解建筑供配电系统的基本知识,可以更好地理解和应用这些原理,从而提高建筑电力系统的效率和可靠性。在课件中介绍了电工基本知识,包括电路的基本概念、电路的基本物理量和电路的工作状态。这些知识不仅对电气工程师和建筑设计师有用,也对一般人了解电力系统和用电有所帮助。 值得一提的是,建筑供配电系统在建筑工程中的重要性不仅仅是提供电力支持,更是为了确保建筑物的安全性。在建筑供配电系统设计中必须考虑到保护装置的设置,以确保电路在发生故障时及时切断电源,避免潜在危险。此外,在电气设备的选型和布置时也需要根据建筑的特点和需求进行合理规划,以提高电力系统的稳定性和安全性。 在实际应用中,建筑供配电系统的设计和建设需要考虑多个方面的因素,如建筑物的类型、规模、用途、电力需求、安全标准等。通过合理的设计和施工,可以确保建筑供配电系统的正常运行和安全性。同时,在建筑供配电系统的维护和管理方面也需要重视,定期检查和维护电气设备,及时发现和解决问题,以确保建筑物内部设备的正常使用。 总的来说,建筑供配电系统是建筑工程中不可或缺的一部分,其重要性不言而喻。通过学习建筑供配电系统的相关知识,可以更好地理解和应用这些原理,提高建筑电力系统的效率和可靠性,确保建筑物内部设备的正常运行和电力安全。建筑供配电系统的设计、建设、维护和管理都需要严谨细致,只有这样才能确保建筑物的电力系统稳定、安全、高效地运行。