dataframe nlargest
时间: 2023-11-18 11:52:03 浏览: 133
dataframe的nlargest方法可以用来求解DataFrame中的最大值。nlargest方法可以指定要返回的最大值的数量,以及依据哪一列进行排序。比如,可以使用nlargest(n, column_name)来返回DataFrame中某一列中的前n个最大值。例如,如果我们有一个DataFrame,其中有两列x和y,我们可以使用nlargest方法来找到y列中的前3个最大值。<span class="em">1</span><span class="em">2</span><span class="em">3</span>
#### 引用[.reference_title]
- *1* *2* [python Dataframe获取n个最大值n个最小值](https://blog.csdn.net/qq_33465047/article/details/122948894)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v92^chatsearchT0_1"}}] [.reference_item style="max-width: 50%"]
- *3* [Python pandas.DataFrame.nlargest函数方法的使用](https://blog.csdn.net/weixin_35759015/article/details/111914697)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v92^chatsearchT0_1"}}] [.reference_item style="max-width: 50%"]
[ .reference_list ]
阅读全文
相关推荐

















