可以使用np.where嘛
时间: 2023-11-23 18:57:27 浏览: 83
可以使用np.where函数来根据条件返回满足条件的元素的坐标或值。下面是一个使用np.where的例子:
```python
import numpy as np
a = np.array([1, 2, 3, 4, 5, 6, 7])
print("a:", a)
# 返回满足条件a > 3的元素的坐标
b = np.where(a > 3)
print("b:", b)
```
输出结果为:
```
a: [1 2 3 4 5 6 7]
b: (array([3, 4, 5, 6]),)
```
在这个例子中,np.where函数返回了满足条件a > 3的元素的坐标,即数组a中大于3的元素的索引。注意,返回的结果是一个元组,其中的array表示满足条件的元素的坐标。
相关问题
np.where(Self_Time < Hour[np.min(np.where(Hour == Country_Time[i])) + 1]), np.inf, np.nan)
As an AI language model, I cannot provide a definitive answer without additional context and information about the variables and the code block. However, I can provide some general information about the np.where() function and the code snippet you provided.
The np.where() function is a NumPy function that returns an array of elements from x or y, depending on the condition. The syntax of np.where() is as follows:
np.where(condition, x, y)
- condition: A boolean array or a condition that evaluates to a boolean array.
- x: An array-like object that has the same shape as the condition. It is used to select elements where the condition is True.
- y: An array-like object that has the same shape as the condition. It is used to select elements where the condition is False.
In the code snippet you provided, the np.where() function is used to return an array of values where the condition is True, or np.inf (positive infinity) where the condition is False. The condition is:
Self_Time < Hour[np.min(np.where(Hour == Country_Time[i])) + 1]
This condition compares the values in the Self_Time array with the value in the Hour array at the index returned by np.min(np.where(Hour == Country_Time[i])) + 1. The np.min() function returns the index of the minimum value in the array returned by np.where(). The +1 is added to the index to get the next value in the Hour array.
Overall, the code block you provided seems to be part of a larger program that involves time calculations and comparisons. Without additional context, it is difficult to provide a more specific explanation.
for n_1 in range(10): for n_2 in range(10): if mode == 'up': # 预测上涨 target = np.where(target > 0, 1, 0) prediction = np.where(pred_up > n_1 / 10, 1, 0) + np.where(pred_dn < n_2 / 10, 1, 0) prediction = np.where(prediction > 1, 1, 0).squeeze() elif mode == 'dn': # 预测下跌 target = np.where(target < 0, 1, 0) prediction = np.where(pred_dn > n_1 / 10, 1, 0) + np.where(pred_up < n_2 / 10, 1, 0) prediction = np.where(prediction > 1, 1, 0).squeeze() # print(list(prediction).count(1)) precision = precision_score(target, prediction, zero_division=0)这段代码有问题吗?可能的问题在哪里?
这段代码是一个分类模型的评估代码,它使用了 precision_score 函数计算模型的精度。可能的问题是:
1. 精度计算可能存在除数为零的情况,因为 zero_division 参数被设置为 0,这意味着如果真实标签中没有正类或负类,则精度将为 0。
2. 在计算分类预测时,使用了 pred_up 和 pred_dn 两个变量,但这些变量在代码中没有给出其来源或定义方式,因此可能存在变量未定义或数据类型错误的问题。
3. 在计算分类预测时,使用了 n_1 和 n_2 变量,并将它们除以 10 来将预测阈值映射到 [0,1] 范围内,但这种处理方式可能存在精度损失或不准确的问题,因为可能会出现一些小数无法精确表示的情况。
4. 在计算分类预测时,使用了 np.where 函数来将预测值转换为二进制分类结果,但这种方式可能存在灵敏度不够的问题,因为可能存在一些预测值分布在阈值附近的情况,导致分类结果不准确。
阅读全文