多元线性回归预测模型matlab代码
时间: 2023-12-31 13:01:55 浏览: 105
多元线性回归是一种用于预测多个自变量与因变量之间关系的统计模型。在MATLAB中,可以使用以下代码创建多元线性回归预测模型:
```matlab
% 准备数据
X = [x1 x2 x3]; % 自变量矩阵,每一列代表一个自变量
Y = [y]; % 因变量向量
% 拟合多元线性回归模型
mdl = fitlm(X, Y); % 使用fitlm函数拟合多元线性回归模型
% 查看回归系数和统计信息
disp(mdl); % 显示回归系数和统计信息
disp('R-squared:');
disp(mdl.Rsquared.Ordinary); % 显示R方值
% 进行预测
X_new = [x1_new x2_new x3_new]; % 新的自变量数值
Y_pred = predict(mdl, X_new); % 使用predict函数进行预测
% 绘制结果
scatter3(x1, x2, x3, 'filled'); % 绘制原始数据点
hold on;
scatter3(x1_new, x2_new, x3_new, 'filled', 'r'); % 绘制新的自变量点
scatter3(x1_new, x2_new, x3_new, 'filled', 'g'); % 绘制预测结果点
xlabel('x1'); ylabel('x2'); zlabel('x3'); % 设置坐标轴标签
legend('Original Data', 'New Data', 'Predicted Data'); % 设置图例
```
以上代码首先准备数据,然后使用fitlm函数拟合多元线性回归模型。接着可以查看回归系数和统计信息,以及进行预测。最后,可以绘制原始数据点、新的自变量点和预测结果点来可视化预测结果。这样就可以使用MATLAB创建一个多元线性回归预测模型,并进行预测了。
阅读全文