用C语言通过无迹卡尔曼滤波算法编写一套电池SOC计算函数,其中电池的容量使用Peukert常数n=1.357,电池的初始容量Q0=100Ah来计算,并加上UKF算法的实现部分,算法最终输出电池的内阻和当前的SOC值,不使用Eigen C++库
时间: 2023-11-22 22:53:55 浏览: 197
以下是基于C语言实现无迹卡尔曼滤波算法和Peukert公式计算电池SOC的示例代码:
```c
#include <stdio.h>
#include <math.h>
#define N_STATE 2 // 状态量数量:电池内阻和SOC
#define N_MEASURE 1 // 测量量数量:电压
/* 电池参数 */
const double n = 1.357; // Peukert常数
const double Q0 = 100.0; // 初始容量
/* 无迹卡尔曼滤波参数 */
const int LAMBDA = 1; // 无迹变换参数
const double Q[N_STATE] = { 1e-6, 1e-6 }; // 状态噪声协方差矩阵
const double R[N_MEASURE] = { 1e-4 }; // 测量噪声协方差矩阵
/* 状态转移方程 f(x,u,w) */
void stateFunc(double* x, double u, const double* w, double dt)
{
double R0 = x[0];
double SOC = x[1];
double I = u;
// 更新电池内阻
R0 += w[0] * sqrt(Q[0]) * sqrt(dt);
// 更新电池SOC
double I1 = pow(fabs(I), n - 1.0);
double I2 = pow(fabs(I), n);
SOC -= (I > 0 ? (I2 - I1) : (I1 - I2)) * dt / (3600.0 * Q0 * n);
SOC = fmin(fmax(SOC, 0.0), 1.0);
x[0] = R0;
x[1] = SOC;
}
/* 观测方程 h(x,v) */
void measureFunc(double* z, const double* x)
{
double R0 = x[0];
double SOC = x[1];
// 计算电池电压
double V = 12.0; // 假设电池额定电压为12V
double I = (SOC - 0.5) * 2.0 * Q0 * n * 3600.0 / 1000.0; // 计算电流
double V0 = V - I * R0; // 计算电池实际电压
z[0] = V0 + v[0];
}
int main()
{
/* 初始化状态和协方差矩阵 */
double x[N_STATE] = { 0.1, 0.5 }; // 初始状态:内阻0.1Ω,SOC50%
double P[N_STATE][N_STATE] = { { 1e-4, 0.0 }, { 0.0, 1e-4 } }; // 初始协方差矩阵
/* 初始化测量噪声 */
double v[N_MEASURE] = { 0.0 }; // 测量噪声
/* 初始化输入 */
double u = 0.0; // 输入电流
/* 初始化时间 */
double t = 0.0; // 当前时间
double dt = 0.01; // 时间间隔
while (1) {
/* 输入电流 */
printf("请输入电池电流:");
scanf("%lf", &u);
/* 更新状态 */
stateFunc(x, u, w, dt);
/* 计算测量值 */
double z[N_MEASURE];
measureFunc(z, x);
/* 无迹卡尔曼滤波 */
double X[N_STATE][2 * N_STATE + 1];
double Y[N_MEASURE][2 * N_STATE + 1];
double K[N_STATE][N_MEASURE];
double P1[N_STATE][N_STATE];
double P2[N_MEASURE][N_MEASURE];
double P12[N_STATE][N_MEASURE];
/* 生成Sigma点 */
X[0][0] = x[0];
X[1][0] = x[1];
for (int i = 0; i < N_STATE; i++) {
for (int j = 0; j < N_STATE; j++) {
X[i][j + 1] = x[i] + sqrt(LAMBDA + N_STATE) * sqrt(P[i][j]);
X[i][j + N_STATE + 1] = x[i] - sqrt(LAMBDA + N_STATE) * sqrt(P[i][j]);
}
}
/* 传播Sigma点 */
for (int i = 0; i < 2 * N_STATE + 1; i++) {
stateFunc(X[i], u, w, dt);
}
/* 计算预测均值和协方差矩阵 */
double x1[N_STATE] = { 0.0 };
for (int i = 0; i < 2 * N_STATE + 1; i++) {
for (int j = 0; j < N_STATE; j++) {
x1[j] += X[j][i] / (2 * N_STATE + 1);
}
}
for (int i = 0; i < N_STATE; i++) {
for (int j = 0; j < N_STATE; j++) {
P1[i][j] = 0.0;
for (int k = 0; k < 2 * N_STATE + 1; k++) {
P1[i][j] += (X[i][k] - x1[i]) * (X[j][k] - x1[j]) / (2 * N_STATE + 1);
}
P1[i][j] += Q[i];
}
}
/* 计算观测均值和协方差矩阵 */
double z1[N_MEASURE] = { 0.0 };
for (int i = 0; i < 2 * N_STATE + 1; i++) {
double z_temp[N_MEASURE];
measureFunc(z_temp, X[i]);
for (int j = 0; j < N_MEASURE; j++) {
z1[j] += z_temp[j] / (2 * N_STATE + 1);
}
}
for (int i = 0; i < N_MEASURE; i++) {
for (int j = 0; j < N_MEASURE; j++) {
P2[i][j] = 0.0;
for (int k = 0; k < 2 * N_STATE + 1; k++) {
double z_temp[N_MEASURE];
measureFunc(z_temp, X[k]);
P2[i][j] += (z_temp[i] - z1[i]) * (z_temp[j] - z1[j]) / (2 * N_STATE + 1);
}
P2[i][j] += R[i];
}
}
/* 计算预测-观测协方差矩阵 */
for (int i = 0; i < N_STATE; i++) {
for (int j = 0; j < N_MEASURE; j++) {
P12[i][j] = 0.0;
for (int k = 0; k < 2 * N_STATE + 1; k++) {
P12[i][j] += (X[i][k] - x1[i]) * (z[k][j] - z1[j]) / (2 * N_STATE + 1);
}
}
}
/* 计算Kalman增益 */
for (int i = 0; i < N_STATE; i++) {
for (int j = 0; j < N_MEASURE; j++) {
K[i][j] = P12[i][j] / P2[j][j];
}
}
/* 计算状态估计值和协方差矩阵 */
for (int i = 0; i < N_STATE; i++) {
x[i] = x1[i] + K[i][0] * (z[0] - z1[0]);
for (int j = 0; j < N_STATE; j++) {
P[i][j] = P1[i][j] - K[i][0] * P12[i][0];
}
}
/* 输出结果 */
printf("当前电池内阻为:%.4lf Ω\n", x[0]);
printf("当前电池SOC为:%.4lf %%\n", x[1] * 100.0);
}
return 0;
}
```
需要注意的是,上述代码中的无迹卡尔曼滤波部分可能存在一些细节问题,需要根据实际情况进行调整和优化。同时,由于本人并不是专业的电池领域专家,上述代码中的电池模型也可能存在不准确的地方,需要根据实际情况进行调整和修改。
阅读全文