帮我实现一个GAN结构,基于pytorch,并给出示例
时间: 2023-05-22 16:01:16 浏览: 89
基于pytorch的GAN.py代码
好的,以下是一个基于 PyTorch 的 GAN 结构的示例代码:
```python
import torch
import torch.nn as nn
import torch.optim as optim
import torchvision.datasets as dset
import torchvision.transforms as transforms
from torch.utils.data import DataLoader
from torch.autograd import Variable
# 定义生成器
class Generator(nn.Module):
def __init__(self, input_size, hidden_size, output_size):
super(Generator, self).__init__()
self.fc1 = nn.Linear(input_size, hidden_size)
self.fc2 = nn.Linear(hidden_size, hidden_size)
self.fc3 = nn.Linear(hidden_size, output_size)
self.relu = nn.ReLU()
self.tanh = nn.Tanh()
def forward(self, x):
out = self.fc1(x)
out = self.relu(out)
out = self.fc2(out)
out = self.relu(out)
out = self.fc3(out)
out = self.tanh(out)
return out
# 定义判别器
class Discriminator(nn.Module):
def __init__(self, input_size, hidden_size, output_size):
super(Discriminator, self).__init__()
self.fc1 = nn.Linear(input_size, hidden_size)
self.fc2 = nn.Linear(hidden_size, hidden_size)
self.fc3 = nn.Linear(hidden_size, output_size)
self.relu = nn.ReLU()
self.sigmoid = nn.Sigmoid()
def forward(self, x):
out = self.fc1(x)
out = self.relu(out)
out = self.fc2(out)
out = self.relu(out)
out = self.fc3(out)
out = self.sigmoid(out)
return out
# 定义超参数
batch_size = 100
learning_rate = 0.0002
num_epochs = 200
# 加载 MNIST 数据集
transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize(mean=(0.5,), std=(0.5,))
])
train_dataset = dset.MNIST(root='./data', train=True, transform=transform, download=True)
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
# 初始化网络
input_size = 784
hidden_size = 256
output_size = 1
G = Generator(input_size, hidden_size, input_size)
D = Discriminator(input_size, hidden_size, output_size)
# 定义损失函数和优化器
criterion = nn.BCELoss()
G_optimizer = optim.Adam(G.parameters(), lr=learning_rate)
D_optimizer = optim.Adam(D.parameters(), lr=learning_rate)
# 训练网络
for epoch in range(num_epochs):
for i, (images, _) in enumerate(train_loader):
# 训练判别器
real_images = Variable(images.view(-1, input_size))
real_labels = Variable(torch.ones(batch_size))
fake_images = Variable(G(torch.randn(batch_size, input_size)))
fake_labels = Variable(torch.zeros(batch_size))
D_real_loss = criterion(D(real_images), real_labels)
D_fake_loss = criterion(D(fake_images), fake_labels)
D_loss = D_real_loss + D_fake_loss
D_optimizer.zero_grad()
D_loss.backward()
D_optimizer.step()
# 训练生成器
fake_images = Variable(G(torch.randn(batch_size, input_size)))
fake_labels = Variable(torch.ones(batch_size))
G_loss = criterion(D(fake_images), fake_labels)
G_optimizer.zero_grad()
G_loss.backward()
G_optimizer.step()
# 打印损失
print('Epoch [{}/{}], D_loss: {:.4f}, G_loss: {:.4f}'.format(epoch+1, num_epochs, D_loss.data[0], G_loss.data[0]))
# 保存模型
torch.save(G.state_dict(), 'G.pth')
torch.save(D.state_dict(), 'D.pth')
```
希望这个示例能够帮助你实现一个 GAN 结构。
阅读全文