写一个stm32增量式pid控制循迹小车例程
时间: 2023-12-12 07:25:02 浏览: 243
好的,为了实现STM32增量式PID控制循迹小车,需要完成以下几个步骤:
1. 初始化硬件:包括引脚设置、定时器设置、ADC设置等。
2. 获取电感传感器的ADC值。
3. 将ADC值转换为误差值。
4. 计算PID控制输出。
5. 控制电机运动。
下面是一个基本的示例代码:
```c
#include "stdio.h"
#include "stm32f10x.h"
#define KP 0.5
#define KD 0.2
#define KI 0.01
#define LEFT_SENSOR 0
#define RIGHT_SENSOR 1
#define CENTER_SENSOR 2
#define SENSOR_NUM 3
#define MOTOR_L 2
#define MOTOR_R 3
int sensor_values[SENSOR_NUM] = {0, 0, 0};
int last_error = 0;
int integral = 0;
void Motor_Init(void) {
GPIO_InitTypeDef GPIO_InitStructure;
TIM_TimeBaseInitTypeDef TIM_TimeBaseStructure;
TIM_OCInitTypeDef TIM_OCInitStructure;
RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA | RCC_APB2Periph_AFIO, ENABLE);
RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM2, ENABLE);
// 左电机引脚设置
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_0 | GPIO_Pin_1;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP;
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
GPIO_Init(GPIOA, &GPIO_InitStructure);
// 右电机引脚设置
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_2 | GPIO_Pin_3;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP;
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
GPIO_Init(GPIOA, &GPIO_InitStructure);
TIM_TimeBaseStructure.TIM_Period = 999;
TIM_TimeBaseStructure.TIM_Prescaler = 71;
TIM_TimeBaseStructure.TIM_ClockDivision = TIM_CKD_DIV1;
TIM_TimeBaseStructure.TIM_CounterMode = TIM_CounterMode_Up;
TIM_TimeBaseInit(TIM2, &TIM_TimeBaseStructure);
TIM_OCInitStructure.TIM_OCMode = TIM_OCMode_PWM1;
TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable;
TIM_OCInitStructure.TIM_Pulse = 0;
TIM_OCInitStructure.TIM_OCPolarity = TIM_OCPolarity_High;
TIM_OC1Init(TIM2, &TIM_OCInitStructure);
TIM_OC1PreloadConfig(TIM2, TIM_OCPreload_Enable);
TIM_OC2Init(TIM2, &TIM_OCInitStructure);
TIM_OC2PreloadConfig(TIM2, TIM_OCPreload_Enable);
TIM_OC3Init(TIM2, &TIM_OCInitStructure);
TIM_OC3PreloadConfig(TIM2, TIM_OCPreload_Enable);
TIM_OC4Init(TIM2, &TIM_OCInitStructure);
TIM_OC4PreloadConfig(TIM2, TIM_OCPreload_Enable);
TIM_Cmd(TIM2, ENABLE);
}
void ADC_Init(void) {
GPIO_InitTypeDef GPIO_InitStructure;
ADC_InitTypeDef ADC_InitStructure;
RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOB | RCC_APB2Periph_ADC1, ENABLE);
// 引脚设置
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_0 | GPIO_Pin_1 | GPIO_Pin_2;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AIN;
GPIO_Init(GPIOB, &GPIO_InitStructure);
// ADC设置
ADC_InitStructure.ADC_Mode = ADC_Mode_Independent;
ADC_InitStructure.ADC_ScanConvMode = ENABLE;
ADC_InitStructure.ADC_ContinuousConvMode = ENABLE;
ADC_InitStructure.ADC_ExternalTrigConv = ADC_ExternalTrigConv_None;
ADC_InitStructure.ADC_DataAlign = ADC_DataAlign_Right;
ADC_InitStructure.ADC_NbrOfChannel = SENSOR_NUM;
ADC_Init(ADC1, &ADC_InitStructure);
ADC_Cmd(ADC1, ENABLE);
ADC_RegularChannelConfig(ADC1, ADC_Channel_8, 1, ADC_SampleTime_28Cycles5);
ADC_RegularChannelConfig(ADC1, ADC_Channel_9, 2, ADC_SampleTime_28Cycles5);
ADC_RegularChannelConfig(ADC1, ADC_Channel_10, 3, ADC_SampleTime_28Cycles5);
ADC_ResetCalibration(ADC1);
while (ADC_GetResetCalibrationStatus(ADC1))
;
ADC_StartCalibration(ADC1);
while (ADC_GetCalibrationStatus(ADC1))
;
}
void Motor_Control(int l_speed, int r_speed) {
if (l_speed < 0) {
TIM_SetCompare1(TIM2, -l_speed);
TIM_SetCompare2(TIM2, 0);
} else {
TIM_SetCompare1(TIM2, 0);
TIM_SetCompare2(TIM2, l_speed);
}
if (r_speed < 0) {
TIM_SetCompare3(TIM2, -r_speed);
TIM_SetCompare4(TIM2, 0);
} else {
TIM_SetCompare3(TIM2, 0);
TIM_SetCompare4(TIM2, r_speed);
}
}
int Get_Sensor_Value(int sensor) {
ADC_RegularChannelConfig(ADC1, sensor, 1, ADC_SampleTime_28Cycles5);
ADC_SoftwareStartConvCmd(ADC1, ENABLE);
while (ADC_GetFlagStatus(ADC1, ADC_FLAG_EOC) == RESET)
;
return ADC_GetConversionValue(ADC1);
}
int Get_Error(void) {
int error = 0;
for (int i = 0; i < SENSOR_NUM; i++) {
int value = Get_Sensor_Value(i);
sensor_values[i] = value;
error += (i - 1) * value;
}
error /= (sensor_values[LEFT_SENSOR] + sensor_values[CENTER_SENSOR] +
sensor_values[RIGHT_SENSOR]);
return error;
}
int PID_Control(int error) {
int derivative = error - last_error;
integral += error;
int output = KP * error + KD * derivative + KI * integral;
last_error = error;
return output;
}
int main(void) {
Motor_Init();
ADC_Init();
while (1) {
int error = Get_Error();
int output = PID_Control(error);
Motor_Control(output, -output);
}
}
```
该示例代码实现了一个基本的STM32增量式PID控制循迹小车,其中KP、KD和KI分别表示比例项、微分项和积分项的系数,通过调整这些系数可以优化控制效果。
阅读全文