利用opengl编写一份带有基本图元控制、动作及其控制,包含纹理、光照、半透明、等特效的特效的基本场景代码,大约200行左右

时间: 2023-08-22 13:09:04 浏览: 42
以下是一个基于OpenGL的简单场景实现代码,包含了基本图元控制、动作及其控制、纹理、光照、半透明等特效,代码量约为200行: ```c++ #include <GL/glut.h> // 定义窗口大小 const int WIDTH = 800; const int HEIGHT = 600; // 定义角度变量和速度变量 float angle = 0.0f; float speed = 1.0f; // 定义纹理ID变量 GLuint texture; // 初始化函数 void init() { // 设置清除颜色为黑色 glClearColor(0.0f, 0.0f, 0.0f, 0.0f); // 启用深度测试 glEnable(GL_DEPTH_TEST); // 设置光照 glEnable(GL_LIGHTING); glEnable(GL_LIGHT0); GLfloat light_pos[] = {0.0f, 1.0f, 0.0f, 0.0f}; glLightfv(GL_LIGHT0, GL_POSITION, light_pos); // 加载纹理 glGenTextures(1, &texture); glBindTexture(GL_TEXTURE_2D, texture); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT); int width, height, channels; unsigned char* image = stbi_load("texture.png", &width, &height, &channels, 0); if (image) { glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, width, height, 0, GL_RGB, GL_UNSIGNED_BYTE, image); stbi_image_free(image); } } // 绘制函数 void display() { // 清除颜色缓冲和深度缓冲 glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); // 设置模型视图矩阵 glMatrixMode(GL_MODELVIEW); glLoadIdentity(); glTranslatef(0.0f, 0.0f, -5.0f); // 绘制立方体 glPushMatrix(); glRotatef(angle, 1.0f, 1.0f, 0.0f); glColor4f(1.0f, 1.0f, 1.0f, 0.5f); glBindTexture(GL_TEXTURE_2D, texture); glBegin(GL_QUADS); // 前面 glNormal3f(0.0f, 0.0f, 1.0f); glTexCoord2f(0.0f, 0.0f); glVertex3f(-1.0f, -1.0f, 1.0f); glTexCoord2f(1.0f, 0.0f); glVertex3f(1.0f, -1.0f, 1.0f); glTexCoord2f(1.0f, 1.0f); glVertex3f(1.0f, 1.0f, 1.0f); glTexCoord2f(0.0f, 1.0f); glVertex3f(-1.0f, 1.0f, 1.0f); // 后面 glNormal3f(0.0f, 0.0f, -1.0f); glTexCoord2f(0.0f, 0.0f); glVertex3f(1.0f, -1.0f, -1.0f); glTexCoord2f(1.0f, 0.0f); glVertex3f(-1.0f, -1.0f, -1.0f); glTexCoord2f(1.0f, 1.0f); glVertex3f(-1.0f, 1.0f, -1.0f); glTexCoord2f(0.0f, 1.0f); glVertex3f(1.0f, 1.0f, -1.0f); // 左面 glNormal3f(-1.0f, 0.0f, 0.0f); glTexCoord2f(0.0f, 0.0f); glVertex3f(-1.0f, -1.0f, -1.0f); glTexCoord2f(1.0f, 0.0f); glVertex3f(-1.0f, -1.0f, 1.0f); glTexCoord2f(1.0f, 1.0f); glVertex3f(-1.0f, 1.0f, 1.0f); glTexCoord2f(0.0f, 1.0f); glVertex3f(-1.0f, 1.0f, -1.0f); // 右面 glNormal3f(1.0f, 0.0f, 0.0f); glTexCoord2f(0.0f, 0.0f); glVertex3f(1.0f, -1.0f, 1.0f); glTexCoord2f(1.0f, 0.0f); glVertex3f(1.0f, -1.0f, -1.0f); glTexCoord2f(1.0f, 1.0f); glVertex3f(1.0f, 1.0f, -1.0f); glTexCoord2f(0.0f, 1.0f); glVertex3f(1.0f, 1.0f, 1.0f); // 上面 glNormal3f(0.0f, 1.0f, 0.0f); glTexCoord2f(0.0f, 0.0f); glVertex3f(-1.0f, 1.0f, 1.0f); glTexCoord2f(1.0f, 0.0f); glVertex3f(1.0f, 1.0f, 1.0f); glTexCoord2f(1.0f, 1.0f); glVertex3f(1.0f, 1.0f, -1.0f); glTexCoord2f(0.0f, 1.0f); glVertex3f(-1.0f, 1.0f, -1.0f); // 下面 glNormal3f(0.0f, -1.0f, 0.0f); glTexCoord2f(0.0f, 0.0f); glVertex3f(-1.0f, -1.0f, -1.0f); glTexCoord2f(1.0f, 0.0f); glVertex3f(1.0f, -1.0f, -1.0f); glTexCoord2f(1.0f, 1.0f); glVertex3f(1.0f, -1.0f, 1.0f); glTexCoord2f(0.0f, 1.0f); glVertex3f(-1.0f, -1.0f, 1.0f); glEnd(); glPopMatrix(); // 交换前后缓冲 glutSwapBuffers(); } // 更新函数 void update(int value) { // 更新角度变量 angle += speed; if (angle > 360.0f) { angle -= 360.0f; } // 重新绘制场景 glutPostRedisplay(); // 重复调用更新函数 glutTimerFunc(25, update, 0); } // 窗口大小变化处理函数 void reshape(int width, int height) { // 设置视口 glViewport(0, 0, width, height); // 设置投影矩阵 glMatrixMode(GL_PROJECTION); glLoadIdentity(); gluPerspective(45.0f, (float)width / (float)height, 0.1f, 100.0f); } // 键盘处理函数 void keyboard(unsigned char key, int x, int y) { switch (key) { case 'a': speed -= 0.1f; break; case 'd': speed += 0.1f; break; default: break; } } int main(int argc, char** argv) { // 初始化GLUT glutInit(&argc, argv); glutInitDisplayMode(GLUT_DOUBLE | GLUT_RGB | GLUT_DEPTH); glutInitWindowSize(WIDTH, HEIGHT); glutCreateWindow("OpenGL Scene"); // 初始化场景 init(); // 注册回调函数 glutDisplayFunc(display); glutReshapeFunc(reshape); glutTimerFunc(25, update, 0); glutKeyboardFunc(keyboard); // 进入事件循环 glutMainLoop(); return 0; } ``` 以上代码实现了一个旋转的半透明带纹理的立方体,使用GLUT库实现窗口和事件处理,使用OpenGL的深度测试和光照特性,包含了基本图元控制、动作及其控制、纹理、光照、半透明等特效,代码量约为200行。

相关推荐

application/x-rar
作者对游戏的说明: 首先,您应当以一种批判的眼光来看待本程序。这个游戏是我制作 的第一部RPG游戏,无任何经验可谈,完全按照自己对游戏的理解进 行设计的。当我参照了《圣剑英雄2》的源码之后,才体会到专业游 戏引擎的博大精深。 该程序的内核大约有2000余行,能够处理人物的行走、对话、战斗, 等等。由于该程序的结构并不适于这种规模的程序,故不推荐您详 细研究该程序。所附地图编辑器的源程序我已经添加了详细的注释, 其程序结构也比较合理,可以作为初学VC的例子。 该程序在VC的程序向导所生成的SDI框架的基础上修改而成。它没有 使用任何关于VC底层的东西。程序的绝大部分都是在CgameView类中 制作的,只有修改窗口特征的一段代码在CMainFrm类中。其他的类 统统没有用到。另外添加的一个类是CEnemy类。 整个游戏的故事情节分成8段,分别由Para1.h ~ Para8.h八个文件 实现。由于程序仅仅能够被动的处理各种各样的消息,所以情节的 实现也只能根据系统的一些参数来判断当前应当做什么。在程序中 使用了冗长的if……else if……结构来实现这种判断。 当然,在我的记录本上,详细的记录了每个事件的判断条件。这种 笨拙的设计当然是不可取的。成都金点所作《圣剑英雄II》采用了 剧本解读的方式,这才是正统的做法。但这也需要更多的编程经验 和熟练的code功夫。 下面列举的是程序编制过程中总结出来的经验和教训。 第一,对话方式应该采用《圣剑英雄II》的剧本方式。 现在的方式把一个段落中所有的对话都混在一个文件中,然后给每 句话一个号码相对应。这样做虽然降低了引擎的难度,却导致剧情的 编写极其繁琐。 第二,运动和显示应当完全分开。 现在的程序中,运动和显示是完全同步的。即:在定时器中调用所有 敌人的运动函数,然后将主角的动画向前推一帧,接着绘制地图,调 用所有敌人的显示函数、重绘主角。这样的好处是不会掉帧,但带来 的问题是,如果要提高敌人的运动速度,那么帧数也跟着上去了。所 以当DEMO版反馈说速度太慢的时候,我修改起来非常困难。而这个问 题到最后也仅仅是将4步一格该成了2步一格。 第三,VC中数组存在上限。如果用“int aaa[1000000000]”定义一个 数组,编译器肯定不会给分配那么大的内存空间。而在这个程序中, 地图矩阵、NPC矩阵都超过了VC中数组的上限。但这一点知道的太晚了。 在1.0版本中已经发现地图最右端缺少了几行,但不知道是什么原因 造成的。(地图编辑器中未出现此问题,因为地图编辑器是用“序列 化”的方式存盘读盘的。)解决这个问题的方法是用“new”来分配 内存空间。 第四,由于不知道应该如何使用“new”和“delete”,几乎所有的DC 都使用了全局变量。这是完全没有必要的。程序运行期大约会耗用20 多M的内存空间,相当于一个大型游戏所使用的内存空间了。 另外,在游戏的剧情、美工方面也有许多问题,总之一个词“业余”。 我就不总结了。下一部作品,我将争取在程序上有一个质的飞跃。

最新推荐

recommend-type

SVG格式定义的电力图元/电力图符

使用SVG格式描述电力图元定义,与编程语言无关(可用于C++、Java等多种开发环境),可作为绘图软件自定义图元的定义描述。
recommend-type

BSC关键绩效财务与客户指标详解

BSC(Balanced Scorecard,平衡计分卡)是一种战略绩效管理系统,它将企业的绩效评估从传统的财务维度扩展到非财务领域,以提供更全面、深入的业绩衡量。在提供的文档中,BSC绩效考核指标主要分为两大类:财务类和客户类。 1. 财务类指标: - 部门费用的实际与预算比较:如项目研究开发费用、课题费用、招聘费用、培训费用和新产品研发费用,均通过实际支出与计划预算的百分比来衡量,这反映了部门在成本控制上的效率。 - 经营利润指标:如承保利润、赔付率和理赔统计,这些涉及保险公司的核心盈利能力和风险管理水平。 - 人力成本和保费收益:如人力成本与计划的比例,以及标准保费、附加佣金、续期推动费用等与预算的对比,评估业务运营和盈利能力。 - 财务效率:包括管理费用、销售费用和投资回报率,如净投资收益率、销售目标达成率等,反映公司的财务健康状况和经营效率。 2. 客户类指标: - 客户满意度:通过包装水平客户满意度调研,了解产品和服务的质量和客户体验。 - 市场表现:通过市场销售月报和市场份额,衡量公司在市场中的竞争地位和销售业绩。 - 服务指标:如新契约标保完成度、续保率和出租率,体现客户服务质量和客户忠诚度。 - 品牌和市场知名度:通过问卷调查、公众媒体反馈和总公司级评价来评估品牌影响力和市场认知度。 BSC绩效考核指标旨在确保企业的战略目标与财务和非财务目标的平衡,通过量化这些关键指标,帮助管理层做出决策,优化资源配置,并驱动组织的整体业绩提升。同时,这份指标汇总文档强调了财务稳健性和客户满意度的重要性,体现了现代企业对多维度绩效管理的重视。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【实战演练】俄罗斯方块:实现经典的俄罗斯方块游戏,学习方块生成和行消除逻辑。

![【实战演练】俄罗斯方块:实现经典的俄罗斯方块游戏,学习方块生成和行消除逻辑。](https://p3-juejin.byteimg.com/tos-cn-i-k3u1fbpfcp/70a49cc62dcc46a491b9f63542110765~tplv-k3u1fbpfcp-zoom-in-crop-mark:1512:0:0:0.awebp) # 1. 俄罗斯方块游戏概述** 俄罗斯方块是一款经典的益智游戏,由阿列克谢·帕基特诺夫于1984年发明。游戏目标是通过控制不断下落的方块,排列成水平线,消除它们并获得分数。俄罗斯方块风靡全球,成为有史以来最受欢迎的视频游戏之一。 # 2.
recommend-type

卷积神经网络实现手势识别程序

卷积神经网络(Convolutional Neural Network, CNN)在手势识别中是一种非常有效的机器学习模型。CNN特别适用于处理图像数据,因为它能够自动提取和学习局部特征,这对于像手势这样的空间模式识别非常重要。以下是使用CNN实现手势识别的基本步骤: 1. **输入数据准备**:首先,你需要收集或获取一组带有标签的手势图像,作为训练和测试数据集。 2. **数据预处理**:对图像进行标准化、裁剪、大小调整等操作,以便于网络输入。 3. **卷积层(Convolutional Layer)**:这是CNN的核心部分,通过一系列可学习的滤波器(卷积核)对输入图像进行卷积,以
recommend-type

绘制企业战略地图:从财务到客户价值的六步法

"BSC资料.pdf" 战略地图是一种战略管理工具,它帮助企业将战略目标可视化,确保所有部门和员工的工作都与公司的整体战略方向保持一致。战略地图的核心内容包括四个相互关联的视角:财务、客户、内部流程和学习与成长。 1. **财务视角**:这是战略地图的最终目标,通常表现为股东价值的提升。例如,股东期望五年后的销售收入达到五亿元,而目前只有一亿元,那么四亿元的差距就是企业的总体目标。 2. **客户视角**:为了实现财务目标,需要明确客户价值主张。企业可以通过提供最低总成本、产品创新、全面解决方案或系统锁定等方式吸引和保留客户,以实现销售额的增长。 3. **内部流程视角**:确定关键流程以支持客户价值主张和财务目标的实现。主要流程可能包括运营管理、客户管理、创新和社会责任等,每个流程都需要有明确的短期、中期和长期目标。 4. **学习与成长视角**:评估和提升企业的人力资本、信息资本和组织资本,确保这些无形资产能够支持内部流程的优化和战略目标的达成。 绘制战略地图的六个步骤: 1. **确定股东价值差距**:识别与股东期望之间的差距。 2. **调整客户价值主张**:分析客户并调整策略以满足他们的需求。 3. **设定价值提升时间表**:规划各阶段的目标以逐步缩小差距。 4. **确定战略主题**:识别关键内部流程并设定目标。 5. **提升战略准备度**:评估并提升无形资产的战略准备度。 6. **制定行动方案**:根据战略地图制定具体行动计划,分配资源和预算。 战略地图的有效性主要取决于两个要素: 1. **KPI的数量及分布比例**:一个有效的战略地图通常包含20个左右的指标,且在四个视角之间有均衡的分布,如财务20%,客户20%,内部流程40%。 2. **KPI的性质比例**:指标应涵盖财务、客户、内部流程和学习与成长等各个方面,以全面反映组织的绩效。 战略地图不仅帮助管理层清晰传达战略意图,也使员工能更好地理解自己的工作如何对公司整体目标产生贡献,从而提高执行力和组织协同性。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

【实战演练】井字棋游戏:开发井字棋游戏,重点在于AI对手的实现。

![【实战演练】井字棋游戏:开发井字棋游戏,重点在于AI对手的实现。](https://img-blog.csdnimg.cn/3d6666081a144d04ba37e95dca25dbd8.png) # 2.1 井字棋游戏规则 井字棋游戏是一个两人对弈的游戏,在3x3的棋盘上进行。玩家轮流在空位上放置自己的棋子(通常为“X”或“O”),目标是让自己的棋子连成一条直线(水平、垂直或对角线)。如果某位玩家率先完成这一目标,则该玩家获胜。 游戏开始时,棋盘上所有位置都为空。玩家轮流放置自己的棋子,直到出现以下情况之一: * 有玩家连成一条直线,获胜。 * 棋盘上所有位置都被占满,平局。
recommend-type

transformer模型对话

Transformer模型是一种基于自注意力机制的深度学习架构,最初由Google团队在2017年的论文《Attention is All You Need》中提出,主要用于自然语言处理任务,如机器翻译和文本生成。Transformer完全摒弃了传统的循环神经网络(RNN)和卷积神经网络(CNN),转而采用全连接的方式处理序列数据,这使得它能够并行计算,极大地提高了训练速度。 在对话系统中,Transformer模型通过编码器-解码器结构工作。编码器将输入序列转化为固定长度的上下文向量,而解码器则根据这些向量逐步生成响应,每一步都通过自注意力机制关注到输入序列的所有部分,这使得模型能够捕捉到
recommend-type

BSC关键绩效指标详解:财务与运营效率评估

BSC(Balanced Scorecard,平衡计分卡)是一种企业绩效管理系统,它将公司的战略目标分解为四个维度:财务、客户、内部流程和学习与成长。在这个文档中,我们看到的是针对特定行业(可能是保险或保险经纪)的BSC绩效考核指标汇总,专注于财务类和非财务类的关键绩效指标(KPIs)。 财务类指标: 1. 部门费用预算达成率:衡量实际支出与计划费用之间的对比,通过公式 (实际部门费用/计划费用)*100% 来计算,数据来源于部门的预算和实际支出记录。 2. 项目研究开发费用预算达成率:同样用于评估研发项目的资金管理,公式为 (实际项目研究开发费用/计划费用)*100%。 3. 课题费用预算达成率、招聘费用预算达成率、培训费用预算达成率 和 新产品研究开发费用预算达成率:这些都是人力资源相关开支的预算执行情况,涉及到费用的实际花费与计划金额的比例。 4. 承保利润:衡量保险公司盈利能力的重要指标,包括赔付率和寿险各险种的死差损益(实际死亡率与预期死亡率的差异)。 5. 赔付率:反映保险公司的赔付情况,是业务健康度的一个关键指标。 6. 内嵌价值的增加:代表了保单的价值增长,反映了公司长期盈利能力。 7. 人力成本总额控制率:通过比较实际人力成本与计划成本来评估人力成本的有效管理。 8. 标准保费达成率:衡量公司的销售业绩,即实际收取保费与目标保费的比率。 9. 其他费用比率,如附加佣金、续期推动费用、业务推动费用等,用来评估营销费用的效率。 非财务类指标: 1. 销售目标达成率:衡量销售团队完成预定目标的程度,通过实际销售额与计划销售额的比率计算。 2. 理赔率:体现客户服务质量和效率,涉及保险公司处理理赔请求的速度和成功率。 3. 产品/服务销售收入达成率:衡量产品或服务的实际销售效果,反映市场响应和客户满意度。 这些指标集合在一起,提供了全面的视角来评估公司的经营效率、财务表现以及战略执行情况。通过定期跟踪和分析这些数据,企业可以持续优化策略,提升业绩,确保与整体战略目标的一致性。每个指标的数据来源通常来自于相关部门的预算和实际操作记录,确保信息的准确性。