# Splitting training data into train & dev sets # if mode == 'train': # indices = [i for i in range(len(data)) if i % 10 != 0] # elif mode == 'dev': # indices = [i for i in range(len(data)) if i % 10 == 0] #baseline上面这段代码划分训练集和测试集按照顺序选择数据,可能造成数据分布问题,我改成随机选择 indices_tr, indices_dev = train_test_split([i for i in range(data.shape[0])], test_size = 0.1, random_state = 0) if self.mode == 'train': indices = indices_tr elif self.mode == 'dev': indices = indices_dev # Convert data into PyTorch tensors self.data = torch.FloatTensor(data[indices]) self.target = torch.FloatTensor(target[indices])
时间: 2024-02-14 07:31:55 浏览: 204
这部分代码用于将训练数据划分为训练集和开发集。原来的代码是根据数据的顺序进行划分,可能会导致数据分布不均匀的问题。现在改成了随机选择数据进行划分,使用了train_test_split函数从范围为0到数据长度的列表中随机选择一定比例的索引,其中的10%作为开发集,而剩下的90%作为训练集。
然后,将选择的数据转换为PyTorch的FloatTensor类型,并分别赋值给self.data和self.target。
相关问题
Traceback (most recent call last)Cell In[16], line 3 1 #splitting into train and validation ----> 3 valid = new_data[2187:] 4 train = new_data
这个Traceback信息显示了一个错误的发生位置和原因。其中,最后一行的信息通常是错误的具体描述,其前面的行则是调用栈信息,可以帮助我们定位错误发生的位置。在这个Traceback信息中,错误发生在Cell In[16]的第3行,即代码中的数据集划分部分。具体来说,出现了一个IndexError,即索引超出范围的错误。这个错误可能是因为数据集new_data的大小小于2187,导致在对其进行切片操作时出现了问题。要解决这个问题,我们需要检查数据集的大小是否符合切片操作的要求,或者重新设计划分数据集的方法。
# Importing the dataset dataset = pd.read_csv('Iris.csv') X = dataset.iloc[:, :-1].values y = dataset.iloc[:, -1].values # Splitting the dataset into the Training set and Test set from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.25, random_state = 0) # Feature Scaling from sklearn.preprocessing import StandardScaler sc = StandardScaler() X_train = sc.fit_transform(X_train) X_test = sc.transform(X_test) # Training the Decision Tree Classification model on the Training set from sklearn.tree import DecisionTreeClassifier classifier = DecisionTreeClassifier(criterion = 'entropy', random_state = 0) classifier.fit(X_train, y_train) # Making the Confusion Matrix from sklearn.metrics import confusion_matrix, accuracy_score y_pred = classifier.predict(X_test) cm = confusion_matrix(y_test, y_pred) print(cm) print(accuracy_score(y_test, y_pred))解释每行代码
代码中的每一行的作用如下:
```python
# 导入数据集
dataset = pd.read_csv('Iris.csv')
# 将特征和标签分开
X = dataset.iloc[:, :-1].values
y = dataset.iloc[:, -1].values
```
这一部分代码将从文件'Iris.csv'中读取数据,将特征和标签分别存储在X和y变量中。这里使用了pandas库中的`read_csv`函数来读取数据。
```python
# 将数据集拆分为训练集和测试集
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.25, random_state = 0)
```
这一部分代码使用了`train_test_split`函数将数据集拆分为训练集和测试集。该函数将数据集按照给定的比例(test_size)分为训练集和测试集,random_state参数用于控制随机数生成器的种子,保证每次划分的结果相同。
```python
# 特征缩放
from sklearn.preprocessing import StandardScaler
sc = StandardScaler()
X_train = sc.fit_transform(X_train)
X_test = sc.transform(X_test)
```
这一部分代码使用StandardScaler函数对特征进行标准化处理,将特征缩放到均值为0,方差为1的标准正态分布中。
```python
# 使用决策树算法训练模型
from sklearn.tree import DecisionTreeClassifier
classifier = DecisionTreeClassifier(criterion = 'entropy', random_state = 0)
classifier.fit(X_train, y_train)
```
这一部分代码使用了sklearn库中的DecisionTreeClassifier算法,通过将特征和标签传入fit函数进行训练。criterion参数用于选择划分节点的标准,这里使用了“信息熵”作为划分标准。
```python
# 使用测试集进行预测并生成混淆矩阵和准确率
from sklearn.metrics import confusion_matrix, accuracy_score
y_pred = classifier.predict(X_test)
cm = confusion_matrix(y_test, y_pred)
print(cm)
print(accuracy_score(y_test, y_pred))
```
这一部分代码对训练好的模型进行测试,使用predict函数对测试集进行预测,生成混淆矩阵和准确率来评估模型的性能。confusion_matrix函数用于生成混淆矩阵,accuracy_score函数用于计算准确率。
阅读全文
相关推荐
![md](https://img-home.csdnimg.cn/images/20250102104920.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![pdf](https://img-home.csdnimg.cn/images/20241231044930.png)
![pptx](https://img-home.csdnimg.cn/images/20241231044947.png)