if model != 'normal': A=torch.clamp(A,0.1)这句代码是什么意思
时间: 2023-06-02 16:03:05 浏览: 136
这句代码的意思是:如果变量model的值不等于'normal',则对A进行截断操作,将A中的所有元素限制在0.1及以上,小于0.1的元素被置为0.1。该操作可以用来限制A的取值范围,防止数值过小或过大导致计算不稳定。
相关问题
coding=UTF-8 from flask import Flask, render_template, request, send_from_directory from werkzeug.utils import secure_filename from iconflow.model.colorizer import ReferenceBasedColorizer from skimage.feature import canny as get_canny_feature from torchvision import transforms from PIL import Image import os import datetime import torchvision import cv2 import numpy as np import torch import einops transform_Normalize = torchvision.transforms.Compose([ transforms.Normalize(0.5, 1.0)]) ALLOWED_EXTENSIONS = set([‘png’, ‘jpg’, ‘jpeg’]) app = Flask(name) train_model = ReferenceBasedColorizer() basepath = os.path.join( os.path.dirname(file), ‘images’) # 当前文件所在路径 def allowed_file(filename): return ‘.’ in filename and filename.rsplit(‘.’, 1)[1] in ALLOWED_EXTENSIONS def load_model(log_path=‘/mnt/4T/lzq/IconFlowPaper/checkpoints/normal_model.pt’): global train_model state = torch.load(log_path) train_model.load_state_dict(state[‘net’]) @app.route(“/”, methods=[“GET”, “POST”]) def hello(): if request.method == ‘GET’: return render_template(‘upload.html’) @app.route(‘/upload’, methods=[“GET”, “POST”]) def upload_lnk(): if request.method == ‘GET’: return render_template(‘upload.html’) if request.method == ‘POST’: try: file = request.files['uploadimg'] except Exception: return None if file and allowed_file(file.filename): format = "%Y-%m-%dT%H:%M:%S" now = datetime.datetime.utcnow().strftime(format) filename = now + '_' + file.filename filename = secure_filename(filename) basepath = os.path.join( os.path.dirname(file), ‘images’) # 当前文件所在路径 # upload_path = os.path.join(basepath,secure_filename(f.filename)) file.save(os.path.join(basepath, filename)) else: filename = None return filename @app.route(‘/download/string:filename’, methods=[‘GET’]) def download(filename): if request.method == “GET”: if os.path.isfile(os.path.join(basepath, filename)): return send_from_directory(basepath, filename, as_attachment=True) pass def get_contour(img): x = np.array(img) canny = 0 for layer in np.rollaxis(x, -1): canny |= get_canny_feature(layer, 0) canny = canny.astype(np.uint8) * 255 kernel = np.array([ [0, 1, 1, 1, 0], [1, 1, 1, 1, 1], [1, 1, 1, 1, 1], [1, 1, 1, 1, 1], [0, 1, 1, 1, 0], ], dtype=np.uint8) canny = cv2.dilate(canny, kernel) # canny = Image.fromarray(canny) return canny @app.route(‘/embedding//’, methods=[“GET”, “POST”]) def icontran(img, reference): global train_model if request.method == ‘POST’: imgPath = os.path.join(basepath, img) referencePath = os.path.join(basepath, reference) img = cv2.imread(imgPath) if img is None or img.size <= 0: return None contour = get_contour(img).astype(np.float32).copy() contour = 255 - contour reference = cv2.imread(referencePath).astype(np.float32) reference = cv2.cvtColor(reference, cv2.COLOR_BGR2RGB) reference = transform_Normalize(torch.from_numpy(reference).permute(2, 0, 1).unsqueeze(0).float()/ 255.0) contour = transform_Normalize(torch.from_numpy(contour).unsqueeze(0).unsqueeze(0).float()/ 255.0) train_model.eval() transfer = train_model(contour, reference) transfer = transfer.squeeze(0) transfer = (transfer + 0.5).clamp(0, 1).mul_(255).permute(1, 2, 0).type(torch.uint8).numpy() transfer = transfer.numpy() cv2.imwrite(imgPath, transfer) return basepath # success if name == “main”: load_model() app.run(host=‘10.21.16.144’, port=9999, debug=True) 用puthon写一个调用这个服务器的gui
这是一段 Python 代码,它使用 Flask 框架来创建一个网站应用。它还导入了一些需要使用的库,如 werkzeug、numpy、torch 等。该代码可以对图片进行一些处理,如调整亮度、色彩等。其中包括一个可以将黑白图片变成彩色图片的算法 train_model。同时,代码中使用了一些图像处理的函数和变换,如 canny 算法和 einops。最后,它可以将处理后的图片保存在指定的文件夹中,并在网页中展示出来。
写一段强化学习代码,要求如下:①python3.7解释器②pytorch版本为1.7.1③PPO算法且输出为连续值,PPO算法是自己设计的④gym版本为0.28.0,pendulum-v0环境⑤算法可以直接运行,得到收敛结果
以下是一个使用Python 3.7、PyTorch 1.7.1、gym 0.28.0和PPO算法在`Pendulum-v0`环境中运行并显示收敛结果的基本示例。这个版本的PPO算法实现了连续动作空间下的优化。请注意,实际运行时可能需要进一步优化和调试。
```python
import gym
import torch
import torch.nn as nn
import torch.optim as optim
from torch.distributions import Normal
from collections import deque
import matplotlib.pyplot as plt
# 设置环境
env = gym.make('Pendulum-v0')
state_dim = env.observation_space.shape[0]
action_dim = env.action_space.shape[0]
# 定义Actor-Critic模型
class ActorCritic(nn.Module):
def __init__(self, state_dim, action_dim, hidden_units=[64, 64]):
super(ActorCritic, self).__init__()
self.actor = nn.Sequential(
nn.Linear(state_dim, hidden_units[0]),
nn.Tanh(),
nn.Linear(hidden_units[0], hidden_units[1]),
nn.Tanh(),
nn.Linear(hidden_units[1], action_dim),
nn.Tanh() # 对于连续动作,我们通常限制输出范围
)
self.critic = nn.Sequential(
nn.Linear(state_dim, hidden_units[0]),
nn.Tanh(),
nn.Linear(hidden_units[0], hidden_units[1]),
nn.Tanh(),
nn.Linear(hidden_units[1], 1)
)
def forward(self, state):
actor_out = self.actor(state)
critic_out = self.critic(state)
return actor_out, critic_out
model = ActorCritic(state_dim, action_dim)
optimizer = optim.Adam(model.parameters(), lr=3e-4)
# PPO参数
epsilon = 0.2
gamma = 0.99
K_epochs = 5
alpha = 0.97
replay_buffer = deque(maxlen=10000)
steps_per_epoch = 1000
num_episodes = 1000
plot_every = 100
# 训练过程
for ep in range(num_episodes):
state = env.reset()
done = False
epoch_reward = 0
steps_in_epoch = 0
while not done:
steps_in_epoch += 1
with torch.no_grad():
state_tensor = torch.from_numpy(state).float().unsqueeze(0)
action_dist, _ = model(state_tensor)
action = action_dist.mean
next_state, reward, done, _ = env.step(np.clip(action.item(), -2, 2)) # 剪裁动作到合法范围
next_state_tensor = torch.from_numpy(next_state).float().unsqueeze(0)
replay_buffer.append((state, action, reward, next_state, done))
if len(replay_buffer) == steps_per_epoch:
# 执行一个训练周期
for _ in range(K_epochs):
mini_batch = random.sample(replay_buffer, batch_size)
states, actions, rewards, next_states, dones = zip(*mini_batch)
values, next_values = model(next_states)
_, old_log_probs = model(states)
target_values = rewards + gamma * (1 - dones) * next_values
advantages = target_values - values
ratio = torch.exp(old_log_probs - new_log_probs)
surr1 = ratio * advantages
surr2 = torch.clamp(ratio, 1 - epsilon, 1 + epsilon) * advantages
actor_loss = -torch.min(surr1, surr2).mean()
critic_loss = ((values - target_values)**2).mean()
optimizer.zero_grad()
actor_loss.backward()
critic_loss.backward()
optimizer.step()
state = next_state
epoch_reward += reward
print(f"Episode {ep+1} finished with reward: {epoch_reward}")
if ep % plot_every == 0:
plot_learning_curve(ep, epoch_reward)
# 结束后绘制学习曲线
def plot_learning_curve(ep, epoch_reward):
plt.plot(range(ep, ep + plot_every), [ep_reward for ep_reward in epoch_rewards[-plot_every:]])
plt.xlabel("Episodes")
plt.ylabel("Cumulative Reward")
plt.title("Learning Curve")
plt.show()
```
在这个例子中,`plot_learning_curve`函数用于可视化的学习过程。当程序运行结束后,你会看到一个学习曲线图。如果PPO算法成功收敛,那么曲线会稳定在一个较高的奖励水平上。
阅读全文