imgL = F.pad(imgL,(0,right_pad, top_pad,0)) imgR = F.pad(imgR,(0,right_pad, top_pad,0)) with torch.no_grad(): output3 = model(imgL,imgR) output3 = torch.squeeze(output3) if top_pad !=0: img = output3[:,top_pad:,:] else: img = output3 if len(disp_true[mask])==0: loss = 0 else: loss = F.l1_loss(img[mask],disp_true[mask]) return loss.data.cpu()什么意思
时间: 2024-01-03 22:05:17 浏览: 66
这段代码是深度学习模型的测试函数的一部分,主要用于计算模型在测试集上的误差。
首先,根据上一段代码的计算,如果图像的宽度或高度不能被 16 整除,就需要在图像的右侧或下侧进行填充,以便能够被模型正确地处理。填充后的图像分别保存在 `imgL` 和 `imgR` 中。
接着,使用 `torch.no_grad()` 上下文管理器关闭自动求导,以减少内存的使用和加速计算。
然后,通过 `model(imgL, imgR)` 计算模型的输出。由于输出的形状是 `(B, 1, H, W)`,其中 `B` 是 batch size,因此需要使用 `torch.squeeze(output3)` 去除第二个维度,将输出的形状变为 `(B, H, W)`。
接下来,根据之前计算的填充大小,将输出 `output3` 切片得到与原图像尺寸相同的图像 `img`。
最后,计算输出图像 `img` 和真实视差图 `disp_true` 之间的 L1 损失。由于可能存在视差值非常大的像素点,这些像素点可能不参与误差计算,因此使用掩码 `mask` 进行筛选,只计算视差值小于 192 的像素点的误差。最终,将误差返回。
相关问题
total_test_loss = 0 for batch_idx, (imgL, imgR, disp_L) in enumerate(TestImgLoader): test_loss = test(imgL, imgR, disp_L) print('Iter %d test loss = %.3f' % (batch_idx, test_loss)) total_test_loss += test_loss print('total test loss = %.3f' % (total_test_loss / len(TestImgLoader)))什么意思
这段代码是在函数`main()`中的循环体外部,用于测试模型在测试集上的性能,并输出测试损失。具体含义如下:
- `total_test_loss = 0`:初始化测试损失为0。
- `for batch_idx, (imgL, imgR, disp_L) in enumerate(TestImgLoader):`:使用`TestImgLoader`迭代器依次获取测试数据,循环执行直到获取完所有测试数据。
- `test_loss = test(imgL, imgR, disp_L)`:调用`test()`函数在当前测试数据上进行测试,返回测试损失。
- `print('Iter %d test loss = %.3f' % (batch_idx, test_loss))`:输出当前测试数据的测试损失。
- `total_test_loss += test_loss`:将当前测试数据的测试损失累加到总的测试损失中。
- `print('total test loss = %.3f' % (total_test_loss / len(TestImgLoader)))`:输出所有测试数据的平均测试损失。
需要注意的是,这里的`test()`函数是用于测试模型的,根据上下文无法确定该函数的实现细节。同时,由于缺少函数`test()`的代码和变量定义,可能无法理解该代码的完整含义。
def agglr(costVolume, color_left, color_right, maxDis, P1, P2, thres): H = costVolume.shape[0]; W = costVolume.shape[1] imgL = color_left.astype(np.float32); imgR = color_right.astype(np.float32) penalties = np.zeros(shape=(maxDis), dtype=np.float32) aggtwo = np.zeros(shape=(H, W, maxDis), dtype=np.float32) aggfour = np.zeros(shape=(H, W, maxDis), dtype=np.float32) aggtwo[:, 0, :] = costVolume[:, 0, :] aggfour[:, W - 1, :] = costVolume[:, W - 1, :]啥意思
这段代码是实现了一个聚合算法,用于计算左右两个图像之间的视差。其中,costVolume是一个三维的张量,表示各个像素点在不同视差下的代价值;color_left和color_right分别表示左右两张图像的像素值;maxDis表示最大视差值;P1和P2是用于计算代价值的参数;thres是一个阈值,用于控制是否聚合到更多像素。
代码中,首先获取图像的高度和宽度,将左右两张图像转换为浮点数类型。然后定义penalties、aggtwo和aggfour三个张量,分别用于存储惩罚、两个方向的聚合结果和四个方向的聚合结果。在第一列和最后一列分别初始化两个方向的聚合结果。
阅读全文