生成256*256的图像应该如何改变DCGAN代码中Conv2d函数的参数
时间: 2024-05-29 21:10:02 浏览: 119
要生成256*256的图像,需要增加DCGAN代码中Conv2d函数的参数,使其能够处理更大的图像。具体来说,需要增加卷积层的深度和大小,以便能够处理更多的像素。
可以考虑增加卷积层的数量和大小,例如将卷积层的大小从5x5增加到7x7或9x9,同时增加卷积层的深度,例如从64增加到128或256。另外,还可以增加池化层的大小,以便更好地缩小图像。此外,还应该将生成器网络的输入向量大小增加到256,以适应更大的图像。
需要注意的是,增加网络的深度和大小会增加计算量和训练时间,因此需要考虑计算资源和时间限制。
相关问题
基于pytorch的DCGAN生成11*11的黑白图像代码
下面是一个基于PyTorch实现的DCGAN生成11*11的黑白图像的代码示例:
```python
import torch
import torch.nn as nn
import torch.optim as optim
import numpy as np
import matplotlib.pyplot as plt
from torchvision import datasets, transforms
# 定义生成器模型
class Generator(nn.Module):
def __init__(self, image_size=11, latent_dim=100, hidden_dim=64):
super(Generator, self).__init__()
self.image_size = image_size
self.latent_dim = latent_dim
self.hidden_dim = hidden_dim
self.main = nn.Sequential(
nn.ConvTranspose2d(self.latent_dim, self.hidden_dim * 4, 4, 1, 0, bias=False),
nn.BatchNorm2d(self.hidden_dim * 4),
nn.ReLU(True),
nn.ConvTranspose2d(self.hidden_dim * 4, self.hidden_dim * 2, 4, 2, 1, bias=False),
nn.BatchNorm2d(self.hidden_dim * 2),
nn.ReLU(True),
nn.ConvTranspose2d(self.hidden_dim * 2, self.hidden_dim, 4, 2, 1, bias=False),
nn.BatchNorm2d(self.hidden_dim),
nn.ReLU(True),
nn.ConvTranspose2d(self.hidden_dim, 1, 4, 2, 1, bias=False),
nn.Tanh()
)
def forward(self, input):
return self.main(input.view(-1, self.latent_dim, 1, 1))
# 定义判别器模型
class Discriminator(nn.Module):
def __init__(self, image_size=11, hidden_dim=64):
super(Discriminator, self).__init__()
self.image_size = image_size
self.hidden_dim = hidden_dim
self.main = nn.Sequential(
nn.Conv2d(1, self.hidden_dim, 4, 2, 1, bias=False),
nn.LeakyReLU(0.2, inplace=True),
nn.Conv2d(self.hidden_dim, self.hidden_dim * 2, 4, 2, 1, bias=False),
nn.BatchNorm2d(self.hidden_dim * 2),
nn.LeakyReLU(0.2, inplace=True),
nn.Conv2d(self.hidden_dim * 2, self.hidden_dim * 4, 4, 2, 1, bias=False),
nn.BatchNorm2d(self.hidden_dim * 4),
nn.LeakyReLU(0.2, inplace=True),
nn.Conv2d(self.hidden_dim * 4, 1, 4, 1, 0, bias=False),
nn.Sigmoid()
)
def forward(self, input):
return self.main(input).view(-1, 1)
# 定义训练函数
def train(generator, discriminator, dataloader, num_epochs=20, batch_size=64, lr=0.0002, beta1=0.5):
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
generator.to(device)
discriminator.to(device)
# 定义损失函数和优化器
criterion = nn.BCELoss()
optimizerG = optim.Adam(generator.parameters(), lr=lr, betas=(beta1, 0.999))
optimizerD = optim.Adam(discriminator.parameters(), lr=lr, betas=(beta1, 0.999))
# 定义噪声向量
fixed_noise = torch.randn(64, 100, 1, 1, device=device)
# 开始训练
for epoch in range(num_epochs):
for i, data in enumerate(dataloader, 0):
# 更新判别器模型
discriminator.zero_grad()
real_cpu = data[0].to(device)
b_size = real_cpu.size(0)
label = torch.full((b_size,), 1, device=device)
output = discriminator(real_cpu)
errD_real = criterion(output, label)
noise = torch.randn(b_size, 100, 1, 1, device=device)
fake = generator(noise)
label.fill_(0)
output = discriminator(fake.detach())
errD_fake = criterion(output, label)
errD = errD_real + errD_fake
errD.backward()
optimizerD.step()
# 更新生成器模型
generator.zero_grad()
label.fill_(1)
output = discriminator(fake)
errG = criterion(output, label)
errG.backward()
optimizerG.step()
# 打印损失函数和生成的图像
if i % 100 == 0:
print('[%d/%d][%d/%d]\tLoss_D: %.4f\tLoss_G: %.4f'
% (epoch, num_epochs, i, len(dataloader),
errD.item(), errG.item()))
with torch.no_grad():
fake = generator(fixed_noise).detach().cpu()
plt.imshow(fake[0][0], cmap='gray')
plt.show()
```
使用MNIST数据集训练这个模型:
```python
dataset = datasets.MNIST(root='./data', train=True, transform=transforms.Compose([
transforms.Resize(11),
transforms.ToTensor(),
transforms.Normalize((0.5,), (0.5,))
]), download=True)
dataloader = torch.utils.data.DataLoader(dataset, batch_size=64, shuffle=True, num_workers=2)
generator = Generator()
discriminator = Discriminator()
train(generator, discriminator, dataloader)
```
这个模型的训练过程可能需要几个小时或者更长时间,具体取决于你的计算机性能和数据集大小。
基于pytorch的DCGAN生成11*11的1-bit color图像代码
以下是基于 PyTorch 的 DCGAN 生成 11x11 的 1-bit color 图像的代码:
```python
import torch
import torch.nn as nn
import torch.optim as optim
import torchvision.utils as vutils
import numpy as np
# 设置随机数种子
manualSeed = 999
np.random.seed(manualSeed)
torch.manual_seed(manualSeed)
# 超参数设置
batch_size = 64
image_size = 11
nz = 100
nc = 1
ngf = 64
ndf = 64
num_epochs = 100
lr = 0.0002
beta1 = 0.5
# 加载数据集,这里使用的是随机生成的数据
dataset = torch.zeros((batch_size, nc, image_size, image_size))
for i in range(batch_size):
dataset[i] = torch.from_numpy(np.random.randint(2, size=(nc, image_size, image_size))).float()
dataloader = torch.utils.data.DataLoader(dataset, batch_size=batch_size, shuffle=True)
# 定义生成器
class Generator(nn.Module):
def __init__(self):
super(Generator, self).__init__()
self.main = nn.Sequential(
nn.ConvTranspose2d(nz, ngf * 4, 4, 1, 0, bias=False),
nn.BatchNorm2d(ngf * 4),
nn.ReLU(True),
nn.ConvTranspose2d(ngf * 4, ngf * 2, 4, 2, 1, bias=False),
nn.BatchNorm2d(ngf * 2),
nn.ReLU(True),
nn.ConvTranspose2d(ngf * 2, ngf, 4, 2, 1, bias=False),
nn.BatchNorm2d(ngf),
nn.ReLU(True),
nn.ConvTranspose2d(ngf, nc, 4, 2, 1, bias=False),
nn.Tanh()
)
def forward(self, input):
return self.main(input)
# 定义判别器
class Discriminator(nn.Module):
def __init__(self):
super(Discriminator, self).__init__()
self.main = nn.Sequential(
nn.Conv2d(nc, ndf, 4, 2, 1, bias=False),
nn.LeakyReLU(0.2, inplace=True),
nn.Conv2d(ndf, ndf * 2, 4, 2, 1, bias=False),
nn.BatchNorm2d(ndf * 2),
nn.LeakyReLU(0.2, inplace=True),
nn.Conv2d(ndf * 2, ndf * 4, 4, 2, 1, bias=False),
nn.BatchNorm2d(ndf * 4),
nn.LeakyReLU(0.2, inplace=True),
nn.Conv2d(ndf * 4, 1, 4, 1, 0, bias=False),
nn.Sigmoid()
)
def forward(self, input):
return self.main(input).view(-1, 1).squeeze(1)
# 初始化生成器和判别器
netG = Generator()
netD = Discriminator()
print(netG)
print(netD)
# 定义损失函数和优化器
criterion = nn.BCELoss()
optimizerG = optim.Adam(netG.parameters(), lr=lr, betas=(beta1, 0.999))
optimizerD = optim.Adam(netD.parameters(), lr=lr, betas=(beta1, 0.999))
# 定义固定的噪声,用于生成图像
fixed_noise = torch.randn(64, nz, 1, 1)
# 开始训练
for epoch in range(num_epochs):
for i, data in enumerate(dataloader, 0):
# 更新判别器
netD.zero_grad()
real_cpu = data
batch_size = real_cpu.size(0)
label = torch.full((batch_size,), 1)
output = netD(real_cpu)
errD_real = criterion(output, label)
errD_real.backward()
D_x = output.mean().item()
noise = torch.randn(batch_size, nz, 1, 1)
fake = netG(noise)
label.fill_(0)
output = netD(fake.detach())
errD_fake = criterion(output, label)
errD_fake.backward()
D_G_z1 = output.mean().item()
errD = errD_real + errD_fake
optimizerD.step()
# 更新生成器
netG.zero_grad()
label.fill_(1)
output = netD(fake)
errG = criterion(output, label)
errG.backward()
D_G_z2 = output.mean().item()
optimizerG.step()
# 打印损失和生成的图像
if i % 100 == 0:
print('[%d/%d][%d/%d]\tLoss_D: %.4f\tLoss_G: %.4f\tD(x): %.4f\tD(G(z)): %.4f / %.4f'
% (epoch, num_epochs, i, len(dataloader),
errD.item(), errG.item(), D_x, D_G_z1, D_G_z2))
if (epoch == 0 and i == 0) or ((epoch + 1) % 10 == 0 and i == len(dataloader) - 1):
with torch.no_grad():
fake = netG(fixed_noise).detach().cpu()
vutils.save_image(fake, 'result/epoch_%03d_iter_%d.png' % (epoch, i), normalize=True)
# 保存模型
torch.save(netG.state_dict(), 'netG.pth')
torch.save(netD.state_dict(), 'netD.pth')
```
阅读全文