。我现在外部有三路PWM波输入。我需要使用捕获的功能来实现三路PWM波来实现占空比的计算

时间: 2023-04-10 14:02:35 浏览: 133
你可以使用定时器的捕获功能来实现三路PWM波的占空比计算。具体实现方法如下: 1. 配置定时器的捕获通道,使其能够捕获PWM波的上升沿和下降沿。 2. 在定时器中断服务函数中,根据捕获到的上升沿和下降沿的时间差,计算出PWM波的周期和占空比。 3. 将计算出的占空比存储到相应的变量中,以供后续使用。 以下是一个简单的示例代码: ```c #include "stm32f4xx.h" #define PWM1_CAPTURE_CHANNEL TIM_Channel_1 #define PWM2_CAPTURE_CHANNEL TIM_Channel_2 #define PWM3_CAPTURE_CHANNEL TIM_Channel_3 volatile uint32_t pwm1_period, pwm1_duty; volatile uint32_t pwm2_period, pwm2_duty; volatile uint32_t pwm3_period, pwm3_duty; void TIM2_IRQHandler(void) { static uint32_t pwm1_rising_edge_time, pwm2_rising_edge_time, pwm3_rising_edge_time; if (TIM_GetITStatus(TIM2, TIM_IT_CC1) != RESET) { TIM_ClearITPendingBit(TIM2, TIM_IT_CC1); if (GPIO_ReadInputDataBit(GPIOA, GPIO_Pin_0) == SET) { pwm1_rising_edge_time = TIM_GetCapture1(TIM2); } else { uint32_t pwm1_falling_edge_time = TIM_GetCapture1(TIM2); pwm1_period = pwm1_falling_edge_time - pwm1_rising_edge_time; pwm1_duty = (pwm1_period > 0) ? ((pwm1_falling_edge_time - pwm1_rising_edge_time) * 100 / pwm1_period) : 0; } } if (TIM_GetITStatus(TIM2, TIM_IT_CC2) != RESET) { TIM_ClearITPendingBit(TIM2, TIM_IT_CC2); if (GPIO_ReadInputDataBit(GPIOA, GPIO_Pin_1) == SET) { pwm2_rising_edge_time = TIM_GetCapture2(TIM2); } else { uint32_t pwm2_falling_edge_time = TIM_GetCapture2(TIM2); pwm2_period = pwm2_falling_edge_time - pwm2_rising_edge_time; pwm2_duty = (pwm2_period > 0) ? ((pwm2_falling_edge_time - pwm2_rising_edge_time) * 100 / pwm2_period) : 0; } } if (TIM_GetITStatus(TIM2, TIM_IT_CC3) != RESET) { TIM_ClearITPendingBit(TIM2, TIM_IT_CC3); if (GPIO_ReadInputDataBit(GPIOA, GPIO_Pin_2) == SET) { pwm3_rising_edge_time = TIM_GetCapture3(TIM2); } else { uint32_t pwm3_falling_edge_time = TIM_GetCapture3(TIM2); pwm3_period = pwm3_falling_edge_time - pwm3_rising_edge_time; pwm3_duty = (pwm3_period > 0) ? ((pwm3_falling_edge_time - pwm3_rising_edge_time) * 100 / pwm3_period) : 0; } } } int main(void) { // 初始化定时器2 RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM2, ENABLE); TIM_TimeBaseInitTypeDef TIM_TimeBaseInitStruct; TIM_TimeBaseInitStruct.TIM_Prescaler = 0; TIM_TimeBaseInitStruct.TIM_CounterMode = TIM_CounterMode_Up; TIM_TimeBaseInitStruct.TIM_Period = 0xFFFF; TIM_TimeBaseInitStruct.TIM_ClockDivision = TIM_CKD_DIV1; TIM_TimeBaseInitStruct.TIM_RepetitionCounter = 0; TIM_TimeBaseInit(TIM2, &TIM_TimeBaseInitStruct); // 配置定时器2的捕获通道1、2、3 TIM_ICInitTypeDef TIM_ICInitStruct; TIM_ICInitStruct.TIM_Channel = PWM1_CAPTURE_CHANNEL; TIM_ICInitStruct.TIM_ICPolarity = TIM_ICPolarity_Rising; TIM_ICInitStruct.TIM_ICSelection = TIM_ICSelection_DirectTI; TIM_ICInitStruct.TIM_ICPrescaler = TIM_ICPSC_DIV1; TIM_ICInitStruct.TIM_ICFilter = 0; TIM_ICInit(TIM2, &TIM_ICInitStruct); TIM_ICInitStruct.TIM_Channel = PWM2_CAPTURE_CHANNEL; TIM_ICInit(TIM2, &TIM_ICInitStruct); TIM_ICInitStruct.TIM_Channel = PWM3_CAPTURE_CHANNEL; TIM_ICInit(TIM2, &TIM_ICInitStruct); // 配置GPIO口为输入模式 GPIO_InitTypeDef GPIO_InitStruct; GPIO_InitStruct.GPIO_Pin = GPIO_Pin_0 | GPIO_Pin_1 | GPIO_Pin_2; GPIO_InitStruct.GPIO_Mode = GPIO_Mode_AF; GPIO_InitStruct.GPIO_Speed = GPIO_Speed_100MHz; GPIO_InitStruct.GPIO_OType = GPIO_OType_PP; GPIO_InitStruct.GPIO_PuPd = GPIO_PuPd_NOPULL; GPIO_Init(GPIOA, &GPIO_InitStruct); GPIO_PinAFConfig(GPIOA, GPIO_PinSource0, GPIO_AF_TIM2); GPIO_PinAFConfig(GPIOA, GPIO_PinSource1, GPIO_AF_TIM2); GPIO_PinAFConfig(GPIOA, GPIO_PinSource2, GPIO_AF_TIM2); // 配置定时器2中断 NVIC_InitTypeDef NVIC_InitStruct; NVIC_InitStruct.NVIC_IRQChannel = TIM2_IRQn; NVIC_InitStruct.NVIC_IRQChannelPreemptionPriority = 0; NVIC_InitStruct.NVIC_IRQChannelSubPriority = 0; NVIC_InitStruct.NVIC_IRQChannelCmd = ENABLE; NVIC_Init(&NVIC_InitStruct); TIM_ITConfig(TIM2, TIM_IT_CC1 | TIM_IT_CC2 | TIM_IT_CC3, ENABLE); // 启动定时器2 TIM_Cmd(TIM2, ENABLE); while (1) { // do something } } ```
阅读全文

相关推荐

最新推荐

recommend-type

输出两路占空比和频率可调的互补PWM

CH1和TIM3_CH2)以生成互补PWM,其中通道1和2的占空比和频率均可以通过调整`TIM_TimeBaseInitStruct.TIM_Period`和`TIM_OCInitStruct.TIM_Pulse`来实现。 总的来说,STM32的通用定时器虽然不直接提供像高级定时器...
recommend-type

如何测量PWM波的占空比

FPGA 上有精确的 40MHz 时钟驱动的计数器资源,通过记录信号沿变化时刻的计数器值可以计算得到 PWM 波的脉宽和周期,从而计算出占空比。由于 LabVIEW2012 之前的 FPGA 程序不支持浮点运算,所以占空比计算需要放在 ...
recommend-type

stm32 pwm输入捕捉模式学习笔记

STM32 PWM输入捕捉模式是一种高级的定时器功能,它允许开发者精确地测量输入信号的频率和占空比。在这一模式下,STM32定时器的输入捕获功能被用于处理PWM(脉宽调制)信号。输入捕获的基本原理是当连接到定时器的...
recommend-type

MSP430定时器A 输出1KHz的PWM方波

在本文中,我们将深入探讨如何使用MSP430单片机的定时器A来输出1KHz的PWM(脉宽调制)方波,特别关注输出模式0。MSP430是一款由德州仪器(TI)生产的超低功耗微控制器系列,非常适合于各种嵌入式应用,包括定时器和...
recommend-type

STM32之TIM3_PWM程序

CCR2_Val是TIM3的捕获/比较寄存器2,用于控制PWM信号的占空比。CCR2_Val的值越大,占空比越大,LED1的亮度也越高。CCR2_Val的值可以根据需要进行调整,以控制LED1的亮度。 知识点4:PWM输出的应用 PWM输出有很多...
recommend-type

正整数数组验证库:确保值符合正整数规则

资源摘要信息:"validate.io-positive-integer-array是一个JavaScript库,用于验证一个值是否为正整数数组。该库可以通过npm包管理器进行安装,并且提供了在浏览器中使用的方案。" 该知识点主要涉及到以下几个方面: 1. JavaScript库的使用:validate.io-positive-integer-array是一个专门用于验证数据的JavaScript库,这是JavaScript编程中常见的应用场景。在JavaScript中,库是一个封装好的功能集合,可以很方便地在项目中使用。通过使用这些库,开发者可以节省大量的时间,不必从头开始编写相同的代码。 2. npm包管理器:npm是Node.js的包管理器,用于安装和管理项目依赖。validate.io-positive-integer-array可以通过npm命令"npm install validate.io-positive-integer-array"进行安装,非常方便快捷。这是现代JavaScript开发的重要工具,可以帮助开发者管理和维护项目中的依赖。 3. 浏览器端的使用:validate.io-positive-integer-array提供了在浏览器端使用的方案,这意味着开发者可以在前端项目中直接使用这个库。这使得在浏览器端进行数据验证变得更加方便。 4. 验证正整数数组:validate.io-positive-integer-array的主要功能是验证一个值是否为正整数数组。这是一个在数据处理中常见的需求,特别是在表单验证和数据清洗过程中。通过这个库,开发者可以轻松地进行这类验证,提高数据处理的效率和准确性。 5. 使用方法:validate.io-positive-integer-array提供了简单的使用方法。开发者只需要引入库,然后调用isValid函数并传入需要验证的值即可。返回的结果是一个布尔值,表示输入的值是否为正整数数组。这种简单的API设计使得库的使用变得非常容易上手。 6. 特殊情况处理:validate.io-positive-integer-array还考虑了特殊情况的处理,例如空数组。对于空数组,库会返回false,这帮助开发者避免在数据处理过程中出现错误。 总结来说,validate.io-positive-integer-array是一个功能实用、使用方便的JavaScript库,可以大大简化在JavaScript项目中进行正整数数组验证的工作。通过学习和使用这个库,开发者可以更加高效和准确地处理数据验证问题。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【损失函数与随机梯度下降】:探索学习率对损失函数的影响,实现高效模型训练

![【损失函数与随机梯度下降】:探索学习率对损失函数的影响,实现高效模型训练](https://img-blog.csdnimg.cn/20210619170251934.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3FxXzQzNjc4MDA1,size_16,color_FFFFFF,t_70) # 1. 损失函数与随机梯度下降基础 在机器学习中,损失函数和随机梯度下降(SGD)是核心概念,它们共同决定着模型的训练过程和效果。本
recommend-type

在ADS软件中,如何选择并优化低噪声放大器的直流工作点以实现最佳性能?

在使用ADS软件进行低噪声放大器设计时,选择和优化直流工作点是至关重要的步骤,它直接关系到放大器的稳定性和性能指标。为了帮助你更有效地进行这一过程,推荐参考《ADS软件设计低噪声放大器:直流工作点选择与仿真技巧》,这将为你提供实用的设计技巧和优化方法。 参考资源链接:[ADS软件设计低噪声放大器:直流工作点选择与仿真技巧](https://wenku.csdn.net/doc/9867xzg0gw?spm=1055.2569.3001.10343) 直流工作点的选择应基于晶体管的直流特性,如I-V曲线,确保工作点处于晶体管的最佳线性区域内。在ADS中,你首先需要建立一个包含晶体管和偏置网络
recommend-type

系统移植工具集:镜像、工具链及其他必备软件包

资源摘要信息:"系统移植文件包通常包含了操作系统的核心映像、编译和开发所需的工具链以及其他辅助工具,这些组件共同作用,使得开发者能够在新的硬件平台上部署和运行操作系统。" 系统移植文件包是软件开发和嵌入式系统设计中的一个重要概念。在进行系统移植时,开发者需要将操作系统从一个硬件平台转移到另一个硬件平台。这个过程不仅需要操作系统的系统镜像,还需要一系列工具来辅助整个移植过程。下面将详细说明标题和描述中提到的知识点。 **系统镜像** 系统镜像是操作系统的核心部分,它包含了操作系统启动、运行所需的所有必要文件和配置。在系统移植的语境中,系统镜像通常是指操作系统安装在特定硬件平台上的完整副本。例如,Linux系统镜像通常包含了内核(kernel)、系统库、应用程序、配置文件等。当进行系统移植时,开发者需要获取到适合目标硬件平台的系统镜像。 **工具链** 工具链是系统移植中的关键部分,它包括了一系列用于编译、链接和构建代码的工具。通常,工具链包括编译器(如GCC)、链接器、库文件和调试器等。在移植过程中,开发者使用工具链将源代码编译成适合新硬件平台的机器代码。例如,如果原平台使用ARM架构,而目标平台使用x86架构,则需要重新编译源代码,生成可以在x86平台上运行的二进制文件。 **其他工具** 除了系统镜像和工具链,系统移植文件包还可能包括其他辅助工具。这些工具可能包括: - 启动加载程序(Bootloader):负责初始化硬件设备,加载操作系统。 - 驱动程序:使得操作系统能够识别和管理硬件资源,如硬盘、显卡、网络适配器等。 - 配置工具:用于配置操作系统在新硬件上的运行参数。 - 系统测试工具:用于检测和验证移植后的操作系统是否能够正常运行。 **文件包** 文件包通常是指所有这些组件打包在一起的集合。这些文件可能以压缩包的形式存在,方便下载、存储和传输。文件包的名称列表中可能包含如下内容: - 操作系统特定版本的镜像文件。 - 工具链相关的可执行程序、库文件和配置文件。 - 启动加载程序的二进制代码。 - 驱动程序包。 - 配置和部署脚本。 - 文档说明,包括移植指南、版本说明和API文档等。 在进行系统移植时,开发者首先需要下载对应的文件包,解压后按照文档中的指导进行操作。在整个过程中,开发者需要具备一定的硬件知识和软件开发经验,以确保操作系统能够在新的硬件上正确安装和运行。 总结来说,系统移植文件包是将操作系统和相关工具打包在一起,以便于开发者能够在新硬件平台上进行系统部署。了解和掌握这些组件的使用方法和作用是进行系统移植工作的重要基础。