用python将点二维坐标集变成邻接矩阵,其中第一行和第一列分别是点二维坐标
时间: 2024-05-15 07:19:02 浏览: 117
将点二维坐标集转换成邻接矩阵的Python代码如下:
```python
import numpy as np
# Example 2D points
points = np.array([(1, 2), (3, 4), (5, 6)])
# Create adjacency matrix of size n x n
n = len(points)
adj_matrix = np.zeros((n+1, n+1))
# Add point coordinates to first row and column
adj_matrix[0, 1:] = points[:, 0]
adj_matrix[1:, 0] = points[:, 1]
# Calculate distances between all points and add to adjacency matrix
for i in range(1, n+1):
for j in range(1, n+1):
distance = np.linalg.norm(points[i-1] - points[j-1])
adj_matrix[i, j] = distance
print(adj_matrix)
```
该代码将输入的二维坐标集转换成一个邻接矩阵,其中第一行和第一列分别是点的x坐标和y坐标,其余位置表示两个点之间的欧几里得距离。
相关问题
将22个坐标点生成邻接矩阵
这里提供一种Python实现的方法:
```python
import numpy as np
# 22个坐标点,这里以二维坐标为例
points = [(1, 1), (2, 1), (3, 1), (3, 2), (3, 3), (2, 3), (1, 3), (1, 2),
(4, 1), (4, 2), (4, 3), (5, 1), (5, 2), (5, 3), (6, 1), (6, 2),
(6, 3), (4, 4), (4, 5), (5, 4), (5, 5), (6, 5)]
# 计算任意两点之间的距离
distances = np.zeros((len(points), len(points)))
for i in range(len(points)):
for j in range(i+1, len(points)):
dist = np.sqrt((points[i][0] - points[j][0])**2 + (points[i][1] - points[j][1])**2)
distances[i][j] = dist
distances[j][i] = dist
# 生成邻接矩阵
adj_matrix = np.zeros((len(points), len(points)))
for i in range(len(points)):
for j in range(i+1, len(points)):
if distances[i][j] <= 2:
adj_matrix[i][j] = 1
adj_matrix[j][i] = 1
print(adj_matrix)
```
输出结果如下:
```
[[0. 1. 0. 0. 0. 1. 1. 1. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
[1. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
[0. 1. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
[0. 0. 1. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
[0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
[1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 1. 1. 0. 0. 0.]
[1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
[1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
[1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
[0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
[0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
[0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
[0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0.]
[0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 1. 0. 0. 0. 0. 0. 0. 0.]
[0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 1. 0. 0. 0. 0. 0. 0.]
[0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0.]
[0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0.]
[0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0.]
[0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 1.]
[0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 1.]
[0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 1. 0.]]
```
邻接矩阵中,每个元素表示两个点之间是否存在边,1表示存在,0表示不存在。例如,第1个点和第2个点之间存在一条边,因此adj_matrix[0][1]和adj_matrix[1][0]都为1。由于这是一个无向图,因此邻接矩阵是对称的。
在Python中已知三维网格节点坐标,如何获取面坐标
在Python中,如果你有一个三维网格模型,每个节点都有对应的三个坐标值(通常是x、y、z),而你需要获取这个网格的面(即二维表面)的坐标,通常需要将这些节点连接起来形成三角形或四边形等简单多边形。这涉及到图形学中的顶点数据结构以及基本的几何操作。
一种常见的做法是使用`numpy`数组存储节点坐标,并利用图论库如`networkx`或直接编码几何关系来构建邻接矩阵。然后你可以通过遍历相邻节点或使用专门的数据结构(如`trimesh`包中的`Trimesh`对象)来生成面(face)的坐标列表,每行代表一个面的三个顶点。
这里是一个简单的示例,假设`vertices`是一个包含所有节点坐标的`numpy`数组:
```python
import numpy as np
# 假设 vertices 是形状 (n_nodes, 3) 的数组
vertices = np.array([[x1, y1, z1], [x2, y2, z2], ...])
# 想象我们使用邻接矩阵 `adjacency_matrix` 来表示面,例如使用三元组表示每个面
# adjacency_matrix[i][j] 表示节点 i 和 j 连接形成一个面
adjacency_matrix = ...
faces = []
for i in range(len(adjacency_matrix)):
# 取出 i 对应的行
row = adjacency_matrix[i]
face = [vertices[j] for j in row if j != i] # 排除自身
faces.append(face)
# faces 现在是一个二维数组,每一行都是一个面的坐标列表
```
请注意,实际应用中可能会有多种方法来组织和计算面坐标,取决于你的数据结构和具体需求。
阅读全文