Java中double a=121200000*0.000001导致精度丢失如何解决

时间: 2024-03-14 10:47:06 浏览: 14
在Java中,可以使用BigDecimal类来解决double类型精度丢失的问题。BigDecimal可以精确表示任意大小和精度的十进制数值,避免了double类型的精度问题。 使用BigDecimal类来解决上述问题的代码如下: ``` BigDecimal a = new BigDecimal("121200000").multiply(new BigDecimal("0.000001")); ``` 首先,将121200000和0.000001都转换成字符串表示,然后使用BigDecimal的multiply方法进行乘法运算,最终得到精确的结果。 需要注意的是,使用BigDecimal类进行数值计算时,应该尽量避免使用double类型的数值进行初始化,而是应该使用字符串或者使用BigDecimal提供的静态方法来初始化。这样可以避免在初始化时就出现精度问题。
相关问题

// Decimal hour of the day at Greenwich double greenwichtime = hour - timezone + minute / 60 + second / 3600; // Days from J2000, accurate from 1901 to 2099 double daynum = 367 * year - 7 * (year + (month + 9) / 12) / 4 + 275 * month / 9 + day - 730531.5 + greenwichtime / 24; //Mean longitude of the sun double mean_long = daynum * 0.01720279239 + 4.894967873; double mean_anom = daynum * 0.01720197034 + 6.240040768; double eclip_long = mean_long + 0.03342305518 * Math.sin(mean_anom) + 0.0003490658504 * Math.sin(2 * mean_anom); double obliquity = 0.4090877234 - 0.000000006981317008 * daynum; double rasc = Math.atan2(Math.cos(obliquity) * Math.sin(eclip_long), Math.cos(eclip_long)); double decl = Math.asin(Math.sin(obliquity) * Math.sin(eclip_long)); double sidereal = 4.894961213 + 6.300388099 * daynum + rlon; double hour_ang = sidereal - rasc; double elevation = Math.asin(Math.sin(decl) * Math.sin(rlat) + Math.cos(decl) * Math.cos(rlat) * Math.cos(hour_ang)); //Local azimuth of the sun double azimuth = Math.atan2(-Math.cos(decl) * Math.cos(rlat) * Math.sin(hour_ang), Math.sin(decl) - Math.sin(rlat) * Math.sin(elevation)); azimuth = into_range(Math.toDegrees(azimuth), 0, 360); elevation = into_range(Math.toDegrees(elevation), -180, 180);抽出常量

您可以将这些常量提取出来,并使用它们来计算方位角(azimuth)和仰角(elevation)。以下是一个示例代码: ```java import java.util.TimeZone; public class Main { private static final double MEAN_LONGITUDE_OFFSET = 4.894967873; private static final double MEAN_ANOMALY_COEFFICIENT = 0.01720197034; private static final double ECLIPTIC_LONGITUDE_COEFFICIENT_1 = 0.03342305518; private static final double ECLIPTIC_LONGITUDE_COEFFICIENT_2 = 0.0003490658504; private static final double OBLIQUITY_COEFFICIENT_1 = 0.4090877234; private static final double OBLIQUITY_COEFFICIENT_2 = 0.000000006981317008; private static final double SIDEREAL_COEFFICIENT_1 = 4.894961213; private static final double SIDEREAL_COEFFICIENT_2 = 6.300388099; public static void main(String[] args) { // 其他变量的定义和赋值 // Decimal hour of the day at Greenwich double greenwichtime = hour - timezone + minute / 60 + second / 3600; // Days from J2000, accurate from 1901 to 2099 double daynum = 367 * year - 7 * (year + (month + 9) / 12) / 4 + 275 * month / 9 + day - 730531.5 + greenwichtime / 24; //Mean longitude of the sun double mean_long = daynum * MEAN_ANOMALY_COEFFICIENT + MEAN_LONGITUDE_OFFSET; double mean_anom = daynum * MEAN_ANOMALY_COEFFICIENT + 6.240040768; double eclip_long = mean_long + ECLIPTIC_LONGITUDE_COEFFICIENT_1 * Math.sin(mean_anom) + ECLIPTIC_LONGITUDE_COEFFICIENT_2 * Math.sin(2 * mean_anom); double obliquity = OBLIQUITY_COEFFICIENT_1 - OBLIQUITY_COEFFICIENT_2 * daynum; double rasc = Math.atan2(Math.cos(obliquity) * Math.sin(eclip_long), Math.cos(eclip_long)); double decl = Math.asin(Math.sin(obliquity) * Math.sin(eclip_long)); double sidereal = SIDEREAL_COEFFICIENT_1 + SIDEREAL_COEFFICIENT_2 * daynum + rlon; double hour_ang = sidereal - rasc; double elevation = Math.asin(Math.sin(decl) * Math.sin(rlat) + Math.cos(decl) * Math.cos(rlat) * Math.cos(hour_ang)); //Local azimuth of the sun double azimuth = Math.atan2(-Math.cos(decl) * Math.cos(rlat) * Math.sin(hour_ang), Math.sin(decl) - Math.sin(rlat) * Math.sin(elevation)); azimuth = into_range(Math.toDegrees(azimuth), 0, 360); elevation = into_range(Math.toDegrees(elevation), -180, 180); // 其他操作 } private static double into_range(double value, double min, double max) { double range = max - min; return ((value - min) % range + range) % range + min; } } ``` 这样,您可以在计算方位角和仰角时直接使用这些常量,使代码更加易读和易于维护。

Java中将121200000乘0.000001除360乘2的三一次方,给出代码运算过程以及结果

Java中将121200000乘0.000001除360乘2的三次方,可以使用Math类中的pow方法来实现。具体代码如下: ``` double result = Math.pow(121200000 * 0.000001 / (360 * 2), 3); System.out.println(result); ``` 运算过程如下: 首先计算121200000乘0.000001得到0.1212,然后除以360乘2,得到0.00016833333,再将其三次方,得到0.00000000000000465144。 最终结果为:0.00000000000000465144。

相关推荐

package work; import java.applet.Applet; import java.awt.Color; import java.awt.Graphics; import java.awt.Graphics2D; import java.awt.geom.Line2D; import java.awt.geom.Point2D; public class CyrusBeckAlgorithmApplet extends Applet { private static final long serialVersionUID = 1L; private Point2D.Double[] clipWindow; private Point2D.Double[][] lines; private double[][] vectors; private double[] p1, p2, D; @Override public void init() { clipWindow = new Point2D.Double[3]; clipWindow[0] = new Point2D.Double(200, 275); clipWindow[1] = new Point2D.Double(250.0 / 3, 100); clipWindow[2] = new Point2D.Double(950.0 / 3, 100); lines = new Point2D.Double[2][2]; lines[0][0] = new Point2D.Double(0, 120); lines[0][1] = new Point2D.Double(400, 120); lines[1][0] = new Point2D.Double(0, 180); lines[1][1] = new Point2D.Double(400, 180); vectors = new double[2][2]; D = new double[2]; } @Override public void paint(Graphics g) { super.paint(g); Graphics2D g2d = (Graphics2D) g; // draw clip window g2d.setColor(Color.BLACK); g2d.draw(new Line2D.Double(clipWindow[0], clipWindow[1])); g2d.draw(new Line2D.Double(clipWindow[1], clipWindow[2])); g2d.draw(new Line2D.Double(clipWindow[2], clipWindow[0])); // draw lines for (int i = 0; i < lines.length; i++) { Point2D.Double p1 = lines[i][0]; Point2D.Double p2 = lines[i][1]; cyrusBeckClip(g2d, p1, p2); } } private void cyrusBeckClip(Graphics2D g2d, Point2D.Double p1, Point2D.Double p2) { double tE = 0, tL = 1; double dx = p2.x - p1.x; double dy = p2.y - p1.y; for (int i = 0; i < clipWindow.length; i++) { Point2D.Double P1 = clipWindow[i]; Point2D.Double P2 = clipWindow[(i + 1) % clipWindow.length]; double nx = -(P2.y - P1.y); double ny = P2.x - P1.x; double D = -nx * P1.x - ny * P1.y; double numerator = nx * p1.x + ny * p1.y + D; double denominator = -(nx * dx + ny * dy); if (denominator == 0) { if (numerator < 0) { return; } } else { double t = numerator / denominator; if (denominator < 0) { tE = Math.max(tE, t); } else { tL = Math.min(tL, t); } } } if (tE <= tL) { double x1 = p1.x + tE * dx; double y1 = p1.y + tE * dy; double x2 = p1.x + tL * dx; double y2 = p1.y + tL * dy; g2d.setColor(Color.BLUE); g2d.draw(new Line2D.Double(p1, new Point2D.Double(x1, y1))); g2d.setColor(Color.RED); g2d.draw(new Line2D.Double(new Point2D.Double(x1, y1), new Point2D.Double(x2, y2))); g2d.setColor(Color.BLUE); g2d.draw(new Line2D.Double(new Point2D.Double(x2, y2), p2)); } } } 将此代码改为 Java 应用程序运行

能补充这段代码吗import javafx.application.Application; import javafx.scene.Scene; import javafx.scene.layout.Pane; import javafx.scene.paint.Color; import javafx.scene.shape.Circle; import javafx.scene.shape.Rectangle; import javafx.scene.shape.Polygon; import javafx.stage.Stage; import java.io.FileInputStream; import java.io.IOException; import java.util.Properties; abstract class Shape { protected Color color; protected double area; protected double perimeter; protected double positionX; protected double positionY; public abstract void calculateArea(); public abstract void calculatePerimeter(); public abstract void draw(Pane pane); public void setPosition(double x, double y) { this.positionX = x; this.positionY = y; } } class CircleShape extends Shape { private double radius; public CircleShape(double radius) { this.radius = radius; this.color = Color.RED; } @Override public void calculateArea() { this.area = Math.PI * Math.pow(radius, 2); } @Override public void calculatePerimeter() { this.perimeter = 2 * Math.PI * radius; } @Override public void draw(Pane pane) { Circle circle = new Circle(radius); circle.setFill(color); circle.setLayoutX(positionX); circle.setLayoutY(positionY); pane.getChildren().add(circle); } } class RectangleShape extends Shape { private double width; private double height; public RectangleShape(double width, double height) { this.width = width; this.height = height; this.color = Color.BLUE; } @Override public void calculateArea() { this.area = width * height; } @Override public void calculatePerimeter() { this.perimeter = 2 * (width + height); } @Override public void draw(Pane pane) { Rectangle rectangle = new Rectangle(width, height); rectangle.setFill(color); rectangle.setLayoutX(positionX); rectangle.setLayoutY(positionY); pane.getChildren().add(rectangle); } } class TriangleShape extends Shape { private double[] points; public TriangleShape(double[] points) { this.points = points; this.color = Color.GREEN; } @Override public void calculateArea() { double x1 = points[0]; double y1 = points[1]; doubl

import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.util.ArrayList; import java.util.Arrays; import java.util.Collection; import java.util.Collections; import java.util.LinkedList; import java.util.List; import java.util.Scanner; public class Main{ public static void main(String[] args) throws IOException { BufferedReader in=new BufferedReader(new InputStreamReader(System.in)); int n; double need; double sum=0; String s[]=in.readLine().split(" "); n=Integer.parseInt(s[0]); need=Double.parseDouble(s[1]); String amount[]=in.readLine().split(" "); String price[]=in.readLine().split(" "); ArrayList<Mooncake> cakes=new ArrayList<Mooncake>(); for(int i=0;i<n;i++){ Mooncake cake=new Mooncake(); cake.setAmount(Double.parseDouble(amount[i])); cake.setSales(Double.parseDouble(price[i])); cake.setValues(Double.parseDouble(price[i])/Double.parseDouble(amount[i])); cakes.add(cake); } Collections.sort(cakes); for(Mooncake c: cakes){ if(need>=c.amount){ need=need-c.amount; sum+=c.amount*c.values; } else{ sum+=need*c.values; need=0; } if(need==0){ break; } } System.out.printf("%.2f",sum); } static class Mooncake implements Comparable<Mooncake>{ double amount; double sales; double values; public double getAmount() { return amount; } public void setAmount(double amount) { this.amount = amount; } public double getSales() { return sales; } public void setSales(double sales) { this.sales = sales; } public double getValues() { return values; } public void setValues(double values) { this.values = values; } @Override public int compareTo(Mooncake arg0) { // TODO Auto-generated method stub return this.values>arg0.values?-1:1; } } }转c++

最新推荐

recommend-type

java中double转化为BigDecimal精度缺失的实例

下面小编就为大家带来一篇java中double转化为BigDecimal精度缺失的实例。小编觉得挺不错的,现在就分享给大家,也给大家做个参考。一起跟随小编过来看看吧
recommend-type

Java中的双重检查(Double-Check)详解

主要为大家详细介绍了Java中的双重检查(Double-Check),感兴趣的小伙伴们可以参考一下
recommend-type

java对double数组排序示例分享

主要介绍了java对double数组排序示例,代码简单,下面我们直接上代码,需要的朋友可以参考下
recommend-type

微信小程序-番茄时钟源码

微信小程序番茄时钟的源码,支持进一步的修改。番茄钟,指的是把工作任务分解成半小时左右,集中精力工作25分钟后休息5分钟,如此视作种一个“番茄”,而“番茄工作法”的流程能使下一个30分钟更有动力。
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

用 Python 画一个可以动的爱心

好的,我可以帮助您使用Python来绘制一个动态的爱心。您可以使用turtle库来实现。以下是实现代码: ```python import turtle import math # 设置画布和画笔 canvas = turtle.Screen() canvas.bgcolor("black") pencil = turtle.Turtle() pencil.speed(0) pencil.color("red", "pink") pencil.pensize(3) # 定义爱心函数 def draw_love(heart_size, x_offset=0, y_offset=0):
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依