列举代码
时间: 2023-07-02 07:12:14 浏览: 114
以下是一个使用DDPM模型实现美妆迁移的Python代码示例:
```python
import numpy as np
import torch
import torch.nn as nn
import torch.optim as optim
from torchvision import transforms
from PIL import Image
# 定义DDPM模型
class DiffusionModel(nn.Module):
def __init__(self, input_channels, output_channels, num_filters):
super(DiffusionModel, self).__init__()
self.conv1 = nn.Conv2d(input_channels, num_filters, kernel_size=3, stride=1, padding=1)
self.conv2 = nn.Conv2d(num_filters, num_filters, kernel_size=3, stride=1, padding=1)
self.conv3 = nn.Conv2d(num_filters, num_filters, kernel_size=3, stride=1, padding=1)
self.conv4 = nn.Conv2d(num_filters, output_channels, kernel_size=3, stride=1, padding=1)
self.relu = nn.ReLU()
def forward(self, x):
x = self.conv1(x)
x = self.relu(x)
x = self.conv2(x)
x = self.relu(x)
x = self.conv3(x)
x = self.relu(x)
x = self.conv4(x)
return x
# 加载数据
transform = transforms.Compose([
transforms.Resize((256, 256)),
transforms.ToTensor()
])
image = Image.open("input.jpg").convert("RGB")
x = transform(image).unsqueeze(0)
# 初始化DDPM模型
model = DiffusionModel(input_channels=3, output_channels=3, num_filters=64)
# 定义优化器和损失函数
optimizer = optim.Adam(model.parameters(), lr=0.001)
criterion = nn.MSELoss()
# 训练模型
for i in range(1000):
optimizer.zero_grad()
y = model(x)
loss = criterion(y, x)
loss.backward()
optimizer.step()
if i % 100 == 0:
print("Epoch: {}, Loss: {}".format(i, loss.item()))
# 使用训练好的模型进行美妆迁移
output = model(x)
output_image = transforms.ToPILImage()(output.squeeze(0).detach().cpu())
output_image.save("output.jpg")
```
这个示例代码中,我们首先定义了一个DDPM模型,并使用优化器和损失函数来训练模型。然后,我们使用训练好的模型对输入图像进行美妆迁移,并将结果保存为输出图像。需要注意的是,这个代码示例只是一个简单的示例,实际的美妆迁移应该考虑更多的因素,例如光照、肤色等。
阅读全文