resnet attention
时间: 2023-05-08 14:57:48 浏览: 228
ResNet Attention是一种基于深度学习的模型架构,用于处理图像分类和物体识别等任务。它结合了ResNet和自注意力机制,通过架构设计和训练方式来解决深度神经网络训练过程中出现的梯度消失和梯度爆炸问题。
ResNet Attention的核心思想是引入注意力机制,以便缩小深度神经网络中信息传递过程中的信息丢失问题。具体而言,ResNet Attention通过在每个特征图中加入不同的权重,来对特征进行约束和聚焦。这样,在网络的后期,ResNet Attention能够将重要的特征放大,抑制不重要的特征,从而使得网络更加有效地提取图像特征,以达到更好的分类效果。
总的来说,ResNet Attention作为一种新型的神经网络架构,提高了深度神经网络在大规模图像分类任务中的性能,使得网络更加智能和高效。它不仅可以处理视觉任务,还可以在自然语言处理、语音识别和语言翻译等领域中发挥重要作用,具有很高的实用价值和研究意义。
相关问题
attention resnet
Attention ResNet是一种将Attention和深层的ResNet思想结合的网络设计。它利用Attention机制来增强选择焦点和不同特征表征的能力,并将其嵌入到已有的ResNet网络中。这种网络设计在cifar-10/100和ImageNet等数据集上都取得了不错的效果。\[1\]
关于Attention ResNet的好处,首先,它的整体架构与ResNet或ResNeXt相似,计算量并不会增大。它通过将中间的正常卷积变成group卷积,并加上几个特征图相加的操作,实现了不同深度的信息整合,从而在一定程度上加深了网络的深度。其次,Attention ResNet的整体框架不受影响,因此很容易与ResNet、ResNeXt等结合在一起。\[3\]
总的来说,Attention ResNet通过结合Attention机制和ResNet思想,提高了网络的表征能力和选择焦点的能力,同时保持了ResNet的优点,使得网络在图像分类任务中取得了良好的效果。\[1\]
#### 引用[.reference_title]
- *1* *2* *3* [论文阅读笔记20.05-第三周:ResNet的多种变种](https://blog.csdn.net/volga_chen/article/details/106213524)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insert_down1,239^v3^insert_chatgpt"}} ] [.reference_item]
[ .reference_list ]
在resnet中加入Coordinate Attention模块代码
好的,下面是在ResNet中加入Coordinate Attention模块的代码。
首先,我们需要导入必要的库:
```python
import torch
import torch.nn as nn
import torch.nn.functional as F
```
然后,我们定义Coordinate Attention模块:
```python
class CoordAtt(nn.Module):
def __init__(self, in_channels):
super(CoordAtt, self).__init__()
self.in_channels = in_channels
self.gamma = nn.Parameter(torch.zeros(1))
self.sigma = nn.Parameter(torch.zeros(1))
self.coord_conv = nn.Conv2d(in_channels, in_channels, kernel_size=1)
self.bn = nn.BatchNorm2d(in_channels)
def forward(self, x):
batch, _, height, width = x.size()
xx = torch.arange(width).repeat(height, 1).float().to(x.device) / (width - 1)
yy = torch.arange(height).repeat(width, 1).t().float().to(x.device) / (height - 1)
xx = xx.view(1, 1, height, width).repeat(batch, 1, 1, 1)
yy = yy.view(1, 1, height, width).repeat(batch, 1, 1, 1)
coord_feat = torch.cat([xx, yy], 1)
coord_feat = self.coord_conv(coord_feat)
coord_feat = self.bn(coord_feat)
coord_feat = torch.sigmoid(coord_feat)
x_pool = x.view(batch, self.in_channels, -1).mean(dim=2).view(batch, self.in_channels, 1, 1)
gamma = self.gamma.view(1, -1, 1, 1)
sigma = self.sigma.view(1, -1, 1, 1)
y = torch.matmul(x_pool, coord_feat.view(batch, self.in_channels, -1))
y = y.view(batch, self.in_channels, 1, 1)
z = torch.matmul(coord_feat.view(batch, self.in_channels, -1), coord_feat.view(batch, self.in_channels, -1).transpose(1, 2))
attn = torch.softmax(torch.div(torch.matmul(y, z), sigma), dim=-1)
y = torch.matmul(attn, x.view(batch, self.in_channels, -1))
y = y.view(batch, self.in_channels, 1, 1)
out = gamma * y + x
return out
```
最后,我们把Coordinate Attention模块加入到ResNet中:
```python
class ResNet(nn.Module):
def __init__(self, block, layers, num_classes=1000, zero_init_residual=False):
super(ResNet, self).__init__()
self.in_channels = 64
self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False)
self.bn1 = nn.BatchNorm2d(64)
self.relu = nn.ReLU(inplace=True)
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
self.layer1 = self._make_layer(block, 64, layers[0])
self.coord_att1 = CoordAtt(64) # 添加Coordinate Attention模块
self.layer2 = self._make_layer(block, 128, layers[1], stride=2)
self.coord_att2 = CoordAtt(128) # 添加Coordinate Attention模块
self.layer3 = self._make_layer(block, 256, layers[2], stride=2)
self.coord_att3 = CoordAtt(256) # 添加Coordinate Attention模块
self.layer4 = self._make_layer(block, 512, layers[3], stride=2)
self.coord_att4 = CoordAtt(512) # 添加Coordinate Attention模块
self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
self.fc = nn.Linear(512 * block.expansion, num_classes)
for m in self.modules():
if isinstance(m, nn.Conv2d):
nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
elif isinstance(m, (nn.BatchNorm2d, nn.GroupNorm)):
nn.init.constant_(m.weight, 1)
nn.init.constant_(m.bias, 0)
if zero_init_residual:
for m in self.modules():
if isinstance(m, Bottleneck):
nn.init.constant_(m.bn3.weight, 0)
elif isinstance(m, BasicBlock):
nn.init.constant_(m.bn2.weight, 0)
def _make_layer(self, block, out_channels, blocks, stride=1):
downsample = None
if stride != 1 or self.in_channels != out_channels * block.expansion:
downsample = nn.Sequential(
nn.Conv2d(self.in_channels, out_channels * block.expansion, kernel_size=1, stride=stride, bias=False),
nn.BatchNorm2d(out_channels * block.expansion),
)
layers = []
layers.append(block(self.in_channels, out_channels, stride, downsample))
self.in_channels = out_channels * block.expansion
for _ in range(1, blocks):
layers.append(block(self.in_channels, out_channels))
return nn.Sequential(*layers)
def forward(self, x):
x = self.conv1(x)
x = self.bn1(x)
x = self.relu(x)
x = self.maxpool(x)
x = self.layer1(x)
x = self.coord_att1(x) # Coordinate Attention模块
x = self.layer2(x)
x = self.coord_att2(x) # Coordinate Attention模块
x = self.layer3(x)
x = self.coord_att3(x) # Coordinate Attention模块
x = self.layer4(x)
x = self.coord_att4(x) # Coordinate Attention模块
x = self.avgpool(x)
x = x.view(x.size(0), -1)
x = self.fc(x)
return x
```
这样,我们就在ResNet中成功加入了Coordinate Attention模块。
阅读全文