def forward(self, x, depth): b, c, h, w = x.size() #位置编码 输入x是一个大小为[b, c, h, w]的四维张量 b_d, c_d, h_d, w_d = depth.size() assert b == b_d and c_d == 1 and h == h_d and w == w_d if self.num_pos_feats_x != 0 and self.num_pos_feats_y != 0: y_embed = torch.arange(h, dtype=torch.float32, device=x.device).unsqueeze(1).repeat(b, 1, w) x_embed = torch.arange(w, dtype=torch.float32, device=x.device).repeat(b, h, 1) z_embed = depth.squeeze().to(dtype=torch.float32, device=x.device)
时间: 2024-01-07 17:03:58 浏览: 93
这段代码是用于生成位置编码的,其中x是输入的四维张量,depth是深度信息的一维张量。首先,代码会判断输入x的大小与depth的大小是否匹配。如果num_pos_feats_x和num_pos_feats_y不为0,则会生成y_embed和x_embed分别表示y和x轴上的位置编码。最后,将depth的张量形状变为与x相同,并转换为float32类型。
相关问题
解释一下这行代码(class MultiSEAM(nn.Module): def init(self, c1, c2, depth, kernel_size=3, patch_size=[3, 5, 7], reduction=16): super(MultiSEAM, self).init() if c1 != c2: c2 = c1 self.DCovN0 = DcovN(c1, c2, depth, kernel_size=kernel_size, patch_size=patch_size[0]) self.DCovN1 = DcovN(c1, c2, depth, kernel_size=kernel_size, patch_size=patch_size[1]) self.DCovN2 = DcovN(c1, c2, depth, kernel_size=kernel_size, patch_size=patch_size[2]) self.avg_pool = torch.nn.AdaptiveAvgPool2d(1) self.fc = nn.Sequential( nn.Linear(c2, c2 // reduction, bias=False), nn.ReLU(inplace=True), nn.Linear(c2 // reduction, c2, bias=False), nn.Sigmoid() ) def forward(self, x): b, c, _, _ = x.size() y0 = self.DCovN0(x) y1 = self.DCovN1(x) y2 = self.DCovN2(x) y0 = self.avg_pool(y0).view(b, c) y1 = self.avg_pool(y1).view(b, c) y2 = self.avg_pool(y2).view(b, c) y4 = self.avg_pool(x).view(b, c) y = (y0 + y1 + y2 + y4) / 4 y = self.fc(y).view(b, c, 1, 1) y = torch.exp(y) return x * y.expand_as(x))
这行代码定义了一个名为MultiSEAM的类,它继承自nn.Module。在初始化函数中,它接受了几个参数:c1和c2表示输入和输出的通道数,depth表示DCovN层的深度,kernel_size表示卷积核大小,patch_size表示每个DCovN层的patch大小,reduction表示fc层中降维的比例。
在初始化函数中,首先调用了nn.Module的init函数,然后判断c1和c2是否相等,如果不相等则将c2设为c1。接着创建三个DCovN层,每个层的输入和输出通道数都为c1和c2,深度为depth,卷积核大小为kernel_size,patch大小分别为patch_size中的三个值。另外还创建了一个AdaptiveAvgPool2d层和一个fc层,fc层由两个线性层和一个ReLU和Sigmoid激活函数组成。
在forward函数中,首先获取输入x的大小,然后分别将x输入到三个DCovN层中得到y0、y1和y2。之后将y0、y1、y2和x分别通过AdaptiveAvgPool2d层进行平均池化,并reshape为大小为(b,c)的向量。然后将这四个向量拼接起来,并除以4得到y。最后将y输入到fc层中得到一个大小为(b,c,1,1)的向量y,并对y进行exp操作。最终得到的结果是x和y的按元素乘积。
class BasicBlock(nn.Module): def __init__(self, net_depth, dim, kernel_size=3, conv_layer=ConvLayer, norm_layer=nn.BatchNorm2d, gate_act=nn.Sigmoid): super().__init__() self.norm = norm_layer(dim) self.conv = conv_layer(net_depth, dim, kernel_size, gate_act) def forward(self, x): identity = x x = self.norm(x) x = self.conv(x) x = identity + x return x转化为Paddle框架写法
class BasicBlock(fluid.dygraph.Layer):
def __init__(self, net_depth, dim, kernel_size=3, conv_layer=ConvLayer, norm_layer=nn.BatchNorm2d, gate_act=fluid.dygraph.nn.functional.sigmoid):
super(BasicBlock, self).__init__()
self.norm = norm_layer(dim)
self.conv = conv_layer(net_depth, dim, kernel_size, gate_act)
def forward(self, x):
identity = x
x = self.norm(x)
x = self.conv(x)
x = identity + x
return x
阅读全文