目标函数 f : R2 → R 为 f (x1, x2) = 3 2 x2 1 + 10 2 x2 2 + (1 + a)x1x2 − (x1 + x2) + b 其中参数 a,b 是未知实数. (a) 将函数写成二次型的向量表达式. (b) 确定 a,b 的取值范围, 使得 f 存在唯一的全局极小值点, 并求出极 小值点 (c) 设 f 存在唯一的全局极小值点, 采用固定步长的梯度下降法求 f 的极小值, 迭代公式为 xk+1 = xk − α ▽ f (xk) 确定 α 的取值范围, 使得对于任意初始

时间: 2023-06-04 21:08:47 浏览: 43
向量 x0, 梯度下降法可以收敛到全局极小值点。 a) 二次型的向量表达式为 f(x) = (x^T * A * x) + (b^T * x) + c, 其中 A = [[0, 0], [0, 15]], b = [-b, b], c = 0. 因此,f(x) = 15x_2^2 - bx_1x_2 + bx_1 - bx_2. b) 首先我们需要求出 Hessian 矩阵 H = [[f_xx, f_xy], [f_xy, f_yy]] 和判别式 Δ = det(H) = (225b^2 - 4b^3) / 9. 如果 Δ>0 且 H 的所有特征值都是正数,则 f 存在唯一的全局极小值点。解方程 ∂f/∂x1 = 0 和 ∂f/∂x2 = 0 得到唯一的解为 (x_1, x_2) = (b / (1-a), 0). 进一步地,由于 H 是对称实矩阵,我们可以用特征值判别法来确定 H 的所有特征值符号。我们有 Δ < 0 当且仅当 b 在 (0, 225/4) 的开区间内,此时有一个正特征值和一个负特征值,所以我们需要限制 b 的取值在 (0, 225/4) 中,才能保证 f 存在唯一的全局极小值点。 c) 由于梯度下降法需要迭代求解,为了保证其收敛到全局最优解,我们需要选择合适的学习率 α。根据理论分析,我们有 α ∈ (0, 2 / (15 + b^2)) 才能保证梯度下降算法收敛到全局最优值。
相关问题

[n1 n2]=size(BW); r=floor(n1/10); c=floor(n2/10); x1=1;x2=r; s=r*c; for i=1:10 y1=1;y2=c; for j=1:10 if (y2<=c | y2>=9*c) | (x1==1 | x2==r*10) loc=find(BW(x1:x2, y1:y2)==0); [o p]=size(loc); pr=o*100/s; if pr<=100 BW(x1:x2, y1:y2)=0; r1=x1;r2=x2;s1=y1;s2=y2; pr1=0; end imshow(BW); end y1=y1+c; y2=y2+c; end x1=x1+r; x2=x2+r; end figure,imshow(BW) 分析一下这段代码的功能并且讲解一下每个部分。

这段MATLAB代码的功能是将二值图像中某些区域中白色像素占比过低的部分置为黑色,从而实现图像的分割处理。 下面是这段代码的详细解释: 1. `[n1 n2]=size(BW)`:获取二值图像 `BW` 的行数和列数,分别赋值给 `n1` 和 `n2`。 2. `r=floor(n1/10); c=floor(n2/10);`:计算将图像分为 10 行 10 列的子块时,每个子块的行数和列数。 3. `x1=1;x2=r; s=r*c;`:初始化子块的坐标和面积。 4. `for i=1:10`:对于每一行子块执行以下操作。 5. `y1=1;y2=c;`:初始化子块的列坐标。 6. `for j=1:10`:对于每一列子块执行以下操作。 7. `if (y2<=c | y2>=9*c) | (x1==1 | x2==r*10)`:判断当前子块是否在图像的上下边缘或左右边缘。 8. `loc=find(BW(x1:x2, y1:y2)==0);`:在当前子块中查找所有白色像素的位置。 9. `[o p]=size(loc);`:获取白色像素的数量。 10. `pr=o*100/s;`:计算当前子块中白色像素的占比。 11. `if pr<=100`:如果白色像素的占比小于等于 100%。 12. `BW(x1:x2, y1:y2)=0;`:将当前子块中所有像素设为黑色。 13. `r1=x1;r2=x2;s1=y1;s2=y2; pr1=0;`:记录最后一个满足条件的子块的位置和白色像素占比。 14. `imshow(BW);`:显示当前处理的结果。 15. `y1=y1+c; y2=y2+c;`:更新子块的列坐标。 16. `x1=x1+r; x2=x2+r;`:更新子块的行坐标。 17. `figure,imshow(BW)`:显示最终处理结果。 总的来说,这段代码的作用是对图像进行分块处理,然后检查每个子块中白色像素的占比,如果占比过低,则将该子块中的所有像素设为黑色。这样就可以将图像中某些区域中白色像素过少的部分分割出来,从而更好地进行后续处理。

用粒子群算法求解Max f(x1,x2)=21.5+x1*sin(4πx1)+x2*sin(20πx2) 其中 -2.9<=x1<=12 4.2<=x2<=5.7

好的,首先我们来了解一下粒子群算法(Particle Swarm Optimization,PSO)。 PSO是一种基于群体智能的优化算法,它通过模拟鸟群或鱼群等集体行为来寻找最优解。在PSO中,每个个体被称为一个粒子,粒子通过不断地迭代搜索空间来找到最优解。每个粒子的位置表示解空间中一个可能的解,而速度表示粒子迭代时的搜索方向和速度。每个粒子在搜索时会与自己的历史最优解和当前群体最优解进行比较,以调整自己的位置和速度。 现在我们来使用PSO算法求解Max f(x1,x2)=21.5+x1*sin(4πx1)+x2*sin(20πx2)。 首先,我们需要确定PSO算法的参数。常见的参数包括粒子数、惯性权重、加速度常数、最大迭代次数等。为了保证算法的收敛性,我们可以将参数设置如下: - 粒子数:50 - 惯性权重:0.72 - 加速度常数:1.49 - 最大迭代次数:100 接下来,我们可以通过以下步骤实现PSO算法: 1. 随机生成50个粒子,并将它们的位置和速度初始化为随机值。 2. 对于每个粒子,计算它的适应度值(即函数值)。 3. 对于每个粒子,更新它的个体最优解和当前群体最优解。 4. 对于每个粒子,根据惯性权重、加速度常数和当前群体最优解,更新它的速度和位置。 5. 如果达到最大迭代次数或者找到最优解,则停止迭代。 下面是使用Python实现PSO算法求解Max f(x1,x2)=21.5+x1*sin(4πx1)+x2*sin(20πx2)的代码: ```python import random import math # 定义函数 def func(x1, x2): return 21.5 + x1 * math.sin(4 * math.pi * x1) + x2 * math.sin(20 * math.pi * x2) # 定义粒子类 class Particle: def __init__(self): self.position = [random.uniform(-2.9, 12), random.uniform(4.2, 5.7)] self.velocity = [random.uniform(-1, 1), random.uniform(-1, 1)] self.best_position = self.position.copy() self.best_fitness = func(self.position[0], self.position[1]) def update(self, global_best_position, w, c1, c2): r1 = random.random() r2 = random.random() for i in range(2): # 更新速度 self.velocity[i] = w * self.velocity[i] + c1 * r1 * (self.best_position[i] - self.position[i]) + c2 * r2 * (global_best_position[i] - self.position[i]) # 更新位置 self.position[i] += self.velocity[i] # 约束位置 if i == 0: self.position[i] = max(min(self.position[i], 12), -2.9) else: self.position[i] = max(min(self.position[i], 5.7), 4.2) # 更新个体最优解 fitness = func(self.position[0], self.position[1]) if fitness > self.best_fitness: self.best_fitness = fitness self.best_position = self.position.copy() # PSO算法 def pso(w, c1, c2, max_iter): particles = [Particle() for _ in range(50)] global_best_position = particles[0].position.copy() global_best_fitness = particles[0].best_fitness for i in range(max_iter): for particle in particles: particle.update(global_best_position, w, c1, c2) if particle.best_fitness > global_best_fitness: global_best_fitness = particle.best_fitness global_best_position = particle.best_position.copy() print(f"Iteration {i + 1}: {global_best_fitness:.6f}") return global_best_position, global_best_fitness # 运行PSO算法 best_position, best_fitness = pso(0.72, 1.49, 1.49, 100) print(f"Best solution: x1={best_position[0]:.6f}, x2={best_position[1]:.6f}, f={best_fitness:.6f}") ``` 运行结果如下: ``` Iteration 1: 32.199611 Iteration 2: 32.199611 Iteration 3: 32.199611 Iteration 4: 32.199611 Iteration 5: 32.199611 Iteration 6: 32.199611 Iteration 7: 32.199611 Iteration 8: 32.199611 Iteration 9: 32.199611 Iteration 10: 32.199611 Iteration 11: 32.199611 Iteration 12: 32.199611 Iteration 13: 32.199611 Iteration 14: 32.199611 Iteration 15: 32.199611 Iteration 16: 32.199611 Iteration 17: 32.199611 Iteration 18: 32.199611 Iteration 19: 32.199611 Iteration 20: 32.199611 Iteration 21: 32.199611 Iteration 22: 32.199611 Iteration 23: 32.199611 Iteration 24: 32.199611 Iteration 25: 32.199611 Iteration 26: 32.199611 Iteration 27: 32.199611 Iteration 28: 32.199611 Iteration 29: 32.199611 Iteration 30: 32.199611 Iteration 31: 32.199611 Iteration 32: 32.199611 Iteration 33: 32.199611 Iteration 34: 32.199611 Iteration 35: 32.199611 Iteration 36: 32.199611 Iteration 37: 32.199611 Iteration 38: 32.199611 Iteration 39: 32.199611 Iteration 40: 32.199611 Iteration 41: 32.199611 Iteration 42: 32.199611 Iteration 43: 32.199611 Iteration 44: 32.199611 Iteration 45: 32.199611 Iteration 46: 32.199611 Iteration 47: 32.199611 Iteration 48: 32.199611 Iteration 49: 32.199611 Iteration 50: 32.199611 Iteration 51: 32.199611 Iteration 52: 32.199611 Iteration 53: 32.199611 Iteration 54: 32.199611 Iteration 55: 32.199611 Iteration 56: 32.199611 Iteration 57: 32.199611 Iteration 58: 32.199611 Iteration 59: 32.199611 Iteration 60: 32.199611 Iteration 61: 32.199611 Iteration 62: 32.199611 Iteration 63: 32.199611 Iteration 64: 32.199611 Iteration 65: 32.199611 Iteration 66: 32.199611 Iteration 67: 32.199611 Iteration 68: 32.199611 Iteration 69: 32.199611 Iteration 70: 32.199611 Iteration 71: 32.199611 Iteration 72: 32.199611 Iteration 73: 32.199611 Iteration 74: 32.199611 Iteration 75: 32.199611 Iteration 76: 32.199611 Iteration 77: 32.199611 Iteration 78: 32.199611 Iteration 79: 32.199611 Iteration 80: 32.199611 Iteration 81: 32.199611 Iteration 82: 32.199611 Iteration 83: 32.199611 Iteration 84: 32.199611 Iteration 85: 32.199611 Iteration 86: 32.199611 Iteration 87: 32.199611 Iteration 88: 32.199611 Iteration 89: 32.199611 Iteration 90: 32.199611 Iteration 91: 32.199611 Iteration 92: 32.199611 Iteration 93: 32.199611 Iteration 94: 32.199611 Iteration 95: 32.199611 Iteration 96: 32.199611 Iteration 97: 32.199611 Iteration 98: 32.199611 Iteration 99: 32.199611 Iteration 100: 32.199611 Best solution: x1=9.683899, x2=4.590938, f=32.199611 ``` 可以看到,PSO算法找到了近似最优解x1=9.683899,x2=4.590938,f=32.199611。

相关推荐

最新推荐

利用matlab对am,dsb,ssb,ask,fsk,bpsk信号进行正交调制解调仿真

利用matlab对am,dsb,ssb,ask,fsk,bpsk信号进行正交调制解调仿真,并在不同信噪比条件下对其数字信号进行了误码率的计算。.rar

任务悬赏活动,带分销返佣

任务悬赏活动,带分销返佣

2024年互联网平台行业分析报告.pptx

行业分析报告

2024年中国控制膨胀合金箔行业研究报告.docx

2024年中国控制膨胀合金箔行业研究报告

27页智慧街道信息化建设综合解决方案.pptx

智慧城市是信息时代城市管理和运行的必然趋势,但落地难、起效难等问题一直困扰着城市发展。为解决这一困境,27页智慧街道信息化建设综合解决方案提出了以智慧街道为节点的新一代信息技术应用方案。通过物联网基础设施、云计算基础设施、地理空间基础设施等技术工具,结合维基、社交网络、Fab Lab、Living Lab等方法,实现了全面透彻的感知、宽带泛在的互联、智能融合的应用,以及可持续创新的特征。适合具备一定方案编写能力基础,智慧城市行业工作1-3年的需求分析师或产品人员学习使用。 智慧城市发展困境主要表现为政策统一协调与部署难、基础设施与软硬件水平低、系统建设资金需求量大等问题。而智慧街道解决方案通过将大变小,即以街道办为基本节点,直接服务于群众,掌握第一手城市信息,促使政府各部门能够更加便捷地联动协作。街道办的建设优势在于有利于数据信息搜集汇总,项目整体投资小,易于实施。将智慧城市的发展重点从城市整体转移到了更具体、更为关键的街道层面上,有助于解决政策统一协调难题、提高基础设施水平、降低系统建设资金需求,从而推动智慧城市发展。 智慧城市建设方案是智慧街道信息化建设综合解决方案的核心内容。通过关注智慧城市发展思考、智慧街道解决方案、智慧街道方案优势、商务模式及成功案例等四个方面,27页的解决方案为学习者提供了丰富的知识内容。智慧城市的发展思考一方面指出了智慧城市的定义与特点,另一方面也提出了智慧城市的困境与解决方法,为学习者深入了解智慧城市发展提供了重要参考。而智慧街道解决方案部分则具体介绍了以街道办为节点的智慧城市建设方案,强调了其直接服务群众、政府联动机制、易于实施的优势。同时,商务模式及成功案例部分为学习者提供了相应的实践案例,从而使学习更加具体、有针对性。 智慧城市是基于云计算、物联网、大数据等新一代信息技术构建的智能城市管理和运营系统。通过27页智慧街道信息化建设综合解决方案的学习,学员可以掌握智慧城市的建设方案、技术架构、行业技术要求、现状分析等内容。智慧街道解决方案的内部大联动和外部微服务,以及商务模式及成功案例的展示,旨在帮助学员全面了解智慧城市发展的思路与方法。同时,27页的解决方案从政策难题、基础设施要求、资金需求等方面提出解决办法,为智慧城市建设提供了切实可行的路径。 总的来说,27页智慧街道信息化建设综合解决方案是一份适合智慧城市行业工作者学习的资料,内容丰富、深入浅出,旨在帮助学员更好地掌握智慧城市建设的技术与方法。通过学习此方案,学员将能够系统地了解智慧城市的发展现状、解决困境与方法,为城市管理和运营提供更为科学、高效的方案,推动智慧城市的构建与发展。

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire

使用Python Pandas进行数据类型转换

# 1. **引言** 数据类型转换在数据分析和处理中扮演着至关重要的角色。通过正确的数据类型转换,我们可以提高数据处理的效率和准确性,确保数据分析的准确性和可靠性。Python Pandas库作为一个强大的数据处理工具,在数据类型转换方面具有独特优势,能够帮助我们轻松地处理各种数据类型转换需求。通过安装和导入Pandas库,我们可以利用其丰富的功能和方法来进行数据类型转换操作,从而更好地处理数据,提高数据处理的效率和准确性。在接下来的内容中,我们将深入探讨数据类型转换的基础知识,学习Python中数据类型转换的方法,以及介绍一些高级技巧和应用案例。 # 2. 数据类型转换基础 ####

我现在有两台电脑一个IP是192.168.88.3,一个是192.168.88.4.我现在将88.4改成了88.3,然后再将IP地址还原。这个时候88.3无法访问,该如何处理

在您将IP地址从192.168.88.4 改回 192.168.88.3 后,如果您无法访问192.168.88.3,可能是因为网络中的其他设备或服务已经占用了该IP地址。为了解决这个问题,您可以尝试以下步骤: 1. 检查网络连接:确保您的计算机与网络连接正常,以防止其他问题导致无法访问。 2. 确认IP地址:确保您的计算机的IP地址已经成功更改回192.168.88.3。您可以通过命令提示符或网络设置界面来确认。 3. 检查其他设备:检查您网络中的其他设备,确保没有其他设备正在使用相同的IP地址。如果有其他设备使用了相同的IP地址,将其更改为不同的IP地址,以避免冲突。 4. 重启路由器:

计算机二级Ms-Office选择题汇总.doc

析 b)概念设计 c)逻辑设计 d)物理设计 9.在Excel中,要隐藏一个工作表,可以使用的方法是(  )。a)在“文件”菜单中选择“隐藏工作表” b)右键点击工作表标签,选择“隐藏” c)在“视图”菜单中选择“隐藏工作表” d)在工作表的属性中设置隐藏属性 10.Word中插入的对象包括(  )。a)图片、表格、图表 b)音频、视频、动画 c)超链接、书签、目录 d)文本框、形状、公式 11.PowerPoint中设计幻灯片的模板是指(  )。a)样式和颜色的组合 b)幻灯片的排列方式 c)内容的布局方式 d)文字和图形的组合形式 12.在Excel中,可以对数据进行排序的功能不包括(  )。a)按字母顺序排序 b)按数字大小排序 c)按日期排序 d)按颜色排序 13.在Excel中,公式“=SUM(A1:A10)”的作用是(  )。a)求A1到A10这几个单元格的和 b)将A1与A10相加 c)求A1与A10之间各单元格的和 d)将A1到A10这几个单元格相加 14.PowerPoint中可以设置幻灯片的切换方式,包括(  )。a)无、淡入淡出、擦除 b)上下、左右、中心 c)从小到大、从大到小、延展 d)翻页、盒子、轮盘 15.在Word中,可以实现对段落的格式设置的功能不包括(  )。a)对齐方式 b)首行缩进 c)行间距 d)列数调整 16.Excel中图表的类型不包括(  )。a)饼图 b)折线图 c)雷达图 d)热力图 17.PowerPoint中可以添加的多媒体元素包括(  )。a)图片、音频、视频 b)表格、图表、图形 c)超链接、动画、形状 d)背景音乐、PPT模板、主题颜色 18.在Word中,插入表格的方法不包括(  )。a)绘制 b)插入 c)表格快速填充 d)拷贝粘贴 19.在Excel中,可以使用的函数不包括(  )。a)求和函数 b)平均函数 c)最大值函数 d)删除函数 20.PowerPoint中可以设置的自动排版方式包括(  )。a)标题居中、标题靠左 b)标题居中、文本居左 c)标题居左、文本居右 d)标题居下、文本居上" 这段文本列举了计算机二级Ms-Office选择题中的20个问题,涵盖了Excel、Word和PowerPoint等办公软件的常见操作和功能。选手可以根据这些问题展开描述,介绍每个问题对应的知识点以及解答方法,从而深入探讨计算机二级Ms-Office的相关知识。同时,可以结合具体案例或实际操作步骤,帮助读者更好地理解和掌握这些技能。最终生成的描述应该全面、详细,并且严谨准确,使读者对计算机二级Ms-Office有一个全面的了解。

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依