opencv实现双目相机标定
时间: 2023-05-30 13:07:05 浏览: 225
双目相机标定是指确定两个相机的内部参数(如焦距、主点位置等)和外部参数(如相对位置、朝向等),以便进行立体视觉处理。OpenCV提供了一组函数来进行双目相机标定,下面是一个简单的示例代码:
```
#include <opencv2/opencv.hpp>
#include <iostream>
using namespace cv;
using namespace std;
int main()
{
// 读取标定图像
Mat img1 = imread("left.png", IMREAD_GRAYSCALE);
Mat img2 = imread("right.png", IMREAD_GRAYSCALE);
// 定义标定板参数
int board_w = 9; // 棋盘格宽度
int board_h = 6; // 棋盘格高度
Size board_size(board_w, board_h); // 棋盘格大小
// 检测棋盘格角点
vector<Point2f> corners1, corners2;
bool found1 = findChessboardCorners(img1, board_size, corners1);
bool found2 = findChessboardCorners(img2, board_size, corners2);
// 如果角点检测成功
if (found1 && found2) {
// 亚像素级角点精确化
cornerSubPix(img1, corners1, Size(11, 11), Size(-1, -1),
TermCriteria(TermCriteria::EPS + TermCriteria::MAX_ITER, 30, 0.1));
cornerSubPix(img2, corners2, Size(11, 11), Size(-1, -1),
TermCriteria(TermCriteria::EPS + TermCriteria::MAX_ITER, 30, 0.1));
// 绘制角点
drawChessboardCorners(img1, board_size, corners1, found1);
drawChessboardCorners(img2, board_size, corners2, found2);
imshow("left", img1);
imshow("right", img2);
// 标定相机
vector<vector<Point3f>> object_points(1);
vector<vector<Point2f>> image_points1(1), image_points2(1);
vector<Point3f> obj;
for (int i = 0; i < board_h; i++) {
for (int j = 0; j < board_w; j++) {
obj.push_back(Point3f(j * 0.03, i * 0.03, 0));
}
}
object_points[0] = obj;
image_points1[0] = corners1;
image_points2[0] = corners2;
Mat cameraMatrix1, cameraMatrix2, distCoeffs1, distCoeffs2;
Mat R, T, E, F;
stereoCalibrate(object_points, image_points1, image_points2,
cameraMatrix1, distCoeffs1, cameraMatrix2, distCoeffs2,
img1.size(), R, T, E, F, CALIB_FIX_INTRINSIC);
// 输出标定结果
cout << "cameraMatrix1:" << endl << cameraMatrix1 << endl;
cout << "distCoeffs1:" << endl << distCoeffs1 << endl;
cout << "cameraMatrix2:" << endl << cameraMatrix2 << endl;
cout << "distCoeffs2:" << endl << distCoeffs2 << endl;
cout << "R:" << endl << R << endl;
cout << "T:" << endl << T << endl;
cout << "E:" << endl << E << endl;
cout << "F:" << endl << F << endl;
}
waitKey(0);
return 0;
}
```
首先,我们读取了左右相机的标定图像,然后定义了棋盘格的大小和参数。接着,我们使用OpenCV的`findChessboardCorners`函数检测棋盘格角点,并使用`cornerSubPix`函数对角点进行精确化。然后,我们绘制了检测到的角点,并使用`stereoCalibrate`函数进行相机标定。最后,我们输出了标定结果。
需要注意的是,在实际应用中,我们需要采集多组不同的标定图像,并对每组图像进行双目相机标定,然后取平均值作为最终的标定结果。此外,还需要对标定结果进行评估,以确保标定的精度和稳定性。
阅读全文
相关推荐
![-](https://img-home.csdnimg.cn/images/20241231044930.png)
![-](https://img-home.csdnimg.cn/images/20241231045053.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![-](https://img-home.csdnimg.cn/images/20241231045053.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![rar](https://img-home.csdnimg.cn/images/20241231044955.png)
![-](https://img-home.csdnimg.cn/images/20241231044955.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)