opencv双目相机标定python

时间: 2023-05-31 08:18:36 浏览: 274
### 回答1: OpenCV是一个流行的计算机视觉库,它提供了许多用于双目相机标定的函数和工具。在Python中使用OpenCV进行双目相机标定,可以通过以下步骤实现: 1. 准备标定板:使用一个已知尺寸的标定板,如棋盘格,打印出来并粘贴在平面表面上。 2. 拍摄标定图像:使用双目相机拍摄多张标定图像,保证标定板在不同位置和角度下都能被看到。 3. 提取角点:使用OpenCV的函数,如cv2.findChessboardCorners(),在每张标定图像中提取标定板的角点。 4. 标定相机:使用OpenCV的函数,如cv2.calibrateCamera(),对每个相机进行单独的标定,得到相机的内参矩阵和畸变系数。 5. 计算双目相机的外参矩阵:使用OpenCV的函数,如cv2.stereoCalibrate(),对双目相机进行标定,得到相机的外参矩阵。 6. 验证标定结果:使用OpenCV的函数,如cv2.stereoRectify(),对标定结果进行验证和校正,以确保双目相机能够准确地进行深度测量。 以上就是使用OpenCV进行双目相机标定的基本步骤,需要注意的是,标定板的质量和拍摄标定图像的质量对标定结果有很大的影响,因此需要认真准备和执行每个步骤。 ### 回答2: 双目相机标定是用于确定双目相机内外参数的过程,通过双目相机标定可以获得相机的视差和深度信息,对于三维重建、立体匹配等应用非常重要。OpenCV是专门针对计算机视觉处理的一个开源库,提供了许多图像处理和计算机视觉方面的工具,其中也包括了双目相机标定的相关函数。 Python是一门高级编程语言,也是近年来被广泛应用于计算机视觉和机器学习领域的编程语言,它可以方便地调用OpenCV提供的双目相机标定函数进行标定。下面介绍一下使用Python调用OpenCV进行双目相机标定的过程。 双目相机标定需要进行以下步骤: 1.采集标定图像。需要用到一组内部、外部参数均未知的双目相机,采集至少10对以上的标定图像,最好是在不同的拍摄位置、不同的角度、不同的视角下进行拍摄。 2.提取角点。首先对采集到的每张标定图像进行角点提取,使用OpenCV中的cv2.findChessboardCorners()函数来自动检测所有角点。该函数通过输入相机标定板的规格,便可自动找到所有的内部角点,返回内部角点的二维像素坐标。 3.计算内部参数。对于每幅图像,我们需要计算其相机内部参数,使用OpenCV中的cv2.calibrateCamera()函数可以得出相机的内参矩阵、畸变系数等参数。该函数要求输入所有的标定图像的角点坐标,并计算出相机内参矩阵、外参矩阵等参数。 4.计算外部参数。计算完内部参数后,我们需要计算相机之间的外部参数,也就是相机的旋转矩阵和平移向量,使用OpenCV中的cv2.stereoCalibrate()函数可以得出相机的外参矩阵等参数。 5.计算视差图。通过双目相机得到的两幅图像,我们需要计算它们之间的视差,使用OpenCV中的cv2.StereoSGBM_create()函数可以对两幅图像进行立体匹配,并返回匹配的视差信息。 以上就是使用Python调用OpenCV进行双目相机标定的整个流程,其中可参考官方文档和相关代码示例进行学习和实践。 ### 回答3: OpenCV是一个广泛应用于计算机视觉领域的开放源代码计算机视觉库,Python是使用OpenCV的一种方便的编程语言。双目相机标定是指为双目摄像机处理而设计的标定,旨在确定特定环境下使用的使用视觉测量系统的误差。下面将详细介绍OpenCV中使用Python进行双目相机标定的方法。 双目相机标定前需要进行以下准备: 1. 选择合适的标定板,如黑白棋盘格。 2.采集一组棋盘格图像,保持相机的标定板相对于相机光轴的姿态不变。 3.关键变量的设定,如图像尺寸和棋盘格尺寸。 接下来,我们可以使用Python实现以下步骤来完成双目相机标定: 1. 导入OpenCV库及其他必要的库: ``` import numpy as np import cv2 import glob ``` 2. 获取用于标定的图像列表。 ``` leftimage = glob.glob('左摄像机图像路径/*.jpg') rightimage = glob.glob('右摄像机图像路径/*.jpg') ``` 3. 定义标定用的棋盘格参数: ``` chessboard_size = (7, 6) square_size = 0.034 ``` 4. 创建棋盘格模型: ``` objp = np.zeros((chessboard_size[0]*chessboard_size[1],3), np.float32) objp[:,:2] = np.mgrid[0:chessboard_size[0],0:chessboard_size[1]].T.reshape(-1,2)*square_size ``` 5. 分别处理左右图像: ``` for i in range(len(leftimage)): imgL = cv2.imread(leftimage[i]) imgR = cv2.imread(rightimage[i]) grayL = cv2.cvtColor(imgL, cv2.COLOR_BGR2GRAY) grayR = cv2.cvtColor(imgR, cv2.COLOR_BGR2GRAY) retL, cornersL = cv2.findChessboardCorners(grayL, chessboard_size,None) retR, cornersR = cv2.findChessboardCorners(grayR, chessboard_size,None) if retL and retR: objpoints.append(objp) cornersL2 = cv2.cornerSubPix(grayL,cornersL,(11,11),(-1,-1),criteria) cornersR2 = cv2.cornerSubPix(grayR,cornersR,(11,11),(-1,-1),criteria) imgpointsL.append(cornersL2) imgpointsR.append(cornersR2) ``` 6. 进行标定: ``` retL, K1, D1, R1, T1 = cv2.calibrateCamera(objpoints, imgpointsL, grayL.shape[::-1], None, None) retR, K2, D2, R2, T2 = cv2.calibrateCamera(objpoints, imgpointsR, grayR.shape[::-1], None, None) ret, K1, D1, K2, D2, R, T, E, F = cv2.stereoCalibrate(objpoints, imgpointsL, imgpointsR, K1, D1, K2, D2, grayR.shape[::-1], None, None, None, None, cv2.CALIB_FIX_INTRINSIC, criteria) ``` 7. 得到最终结果: ``` R1, R2, P1, P2, Q, roi1, roi2 = cv2.stereoRectify(K1, D1, K2, D2, grayR.shape[::-1], R, T) mapLx, mapLy = cv2.initUndistortRectifyMap(K1, D1, R1, P1, grayR.shape[::-1], cv2.CV_32FC1) mapRx, mapRy = cv2.initUndistortRectifyMap(K2, D2, R2, P2, grayR.shape[::-1], cv2.CV_32FC1) ``` 通过以上代码,我们可以实现简单快捷地完成双目相机标定。除了上面介绍的步骤外,还要注意调整图像尺寸并在代码中引入必要的库和函数。在实际应用中,还有很多需要进一步优化和改进的问题,比如误差优化、噪声处理等。因此,我们需要不断学习和实践,进一步提升算法的准确性和稳定性。

相关推荐

rar
实现效果:http://v.youku.com/v_show/id_XMTU2Mzk0NjU3Ng==.html 如何在你的电脑上运行这个程序? 1,它需要cvblobslib这一个opencv的扩展库来实现检测物体与给物体画框的功能,具体安装信息请见: http://dsynflo.blogspot.com/2010/02/cvblobskib-with-opencv-installation.html,当你配置好cvblobslib之后,你可以用这一的程序进行测试:http://dl.dropbox.com/u/110310945/Blobs%20test.rar 2,视频中两个摄像头之间的距离是6cm,你可以根据你摄像头的型号,来选择合适的距离来达到最好的效果。 3,在进行测距之前,首先需要对摄像头进行标定,那么如何标定呢? 在stdafx.h中把"#define CALIBRATION 0"改成 “#define CALIBRATION 1”表示进行标定,标定之后,你就可以在工程目录下的"CalibFile" 文件夹中得到标定信息的文件。如果标定效果还不错,你就可以吧"#define CALIBRATION " 改成0,以后就不需要再标定,直接使用上一次的标定信息。你还需要把"#define ANALYSIS_MODE 1"这行代码放到stdafx.h中。 4,视频中使用的是10*7的棋牌格,共摄录40帧来计算摄像头的各种参数,如果你像使用其他棋盘格,可以在 "StereoFunctions.cpp"文件中修改相应参数。 5,如果你无法打开摄像头,可以在 "StereoGrabber.cpp"文件中修改代码“cvCaptureFromCAM(index)”中index的值。 6,About computing distance: it interpolates the relationship between depth-value and real-distance to third degree polynomial. So i used excel file "interpolation" for interpolation to find k1 to k4, you should find your own value of these parameters. 7,你可以通过调整控制窗口中各个参数的滑块,从而来得到更好的视差图。 8,在目录下的”distance“文件夹中,有计算距离信息的matlab代码。 9,如果你想了解基本的理论,可以看一下这个文档:http://scholar.lib.vt.edu/theses/available/etd-12232009-222118/unrestricted/Short_NJ_T_2009.pdf 视频中环境:vs2008,opencv2.1

最新推荐

计算机毕业设计-校园教务处管理系统.zip

计算机毕业设计中的校园教务处管理系统是一个旨在提高校园教务管理效率和质量的综合性信息平台。该系统采用SSM(Spring、SpringMVC、MyBatis)技术栈进行构建,利用Spring框架进行业务逻辑处理和依赖注入,通过SpringMVC实现模型-视图-控制器的设计模式,以及使用MyBatis作为ORM工具进行数据库持久化操作。系统功能涵盖了学生信息管理、课程安排、成绩录入与查询、教室资源分配、考试管理、教师工作量统计等关键模块,通过提供一个用户友好的界面和强大的后台管理功能,校园教务处管理系统不仅优化了教务工作流程,还提升了学生和教师的互动体验,是计算机专业学生展示其系统分析、设计和开发能力的理想项目。

stc12c5a60s2 例程

stc12c5a60s2 单片机的所有功能的实例,包括SPI、AD、串口、UCOS-II操作系统的应用。

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire

【迁移学习在车牌识别中的应用优势与局限】: 讨论迁移学习在车牌识别中的应用优势和局限

![【迁移学习在车牌识别中的应用优势与局限】: 讨论迁移学习在车牌识别中的应用优势和局限](https://img-blog.csdnimg.cn/direct/916e743fde554bcaaaf13800d2f0ac25.png) # 1. 介绍迁移学习在车牌识别中的背景 在当今人工智能技术迅速发展的时代,迁移学习作为一种强大的技术手段,在车牌识别领域展现出了巨大的潜力和优势。通过迁移学习,我们能够将在一个领域中学习到的知识和模型迁移到另一个相关领域,从而减少对大量标注数据的需求,提高模型训练效率,加快模型收敛速度。这种方法不仅能够增强模型的泛化能力,提升识别的准确率,还能有效应对数据

margin-top: 50%;

margin-top: 50%; 是一种CSS样式代码,用于设置元素的上边距(即与上方元素或父级元素之间的距离)为其父元素高度的50%。 这意味着元素的上边距将等于其父元素高度的50%。例如,如果父元素的高度为100px,则该元素的上边距将为50px。 请注意,这个值只在父元素具有明确的高度(非auto)时才有效。如果父元素的高度是auto,则无法确定元素的上边距。 希望这个解释对你有帮助!如果你还有其他问题,请随时提问。

Android通过全局变量传递数据

在Activity之间数据传递中还有一种比较实用的方式 就是全局对象 实用J2EE的读者来说都知道Java Web的四个作用域 这四个作用域从小到大分别是Page Request Session和Application 其中Application域在应用程序的任何地方都可以使用和访问 除非是Web服务器停止 Android中的全局对象非常类似于Java Web中的Application域 除非是Android应用程序清除内存 否则全局对象将一直可以访问 1 定义一个类继承Application public class MyApp extends Application 2 在AndroidMainfest xml中加入全局变量 android:name " MyApp" 3 在传数据类中获取全局变量Application对象并设置数据 myApp MyApp getApplication ; myApp setName "jack" ; 修改之后的名称 4 在收数据类中接收Application对象 myApp MyApp getApplication ;">在Activity之间数据传递中还有一种比较实用的方式 就是全局对象 实用J2EE的读者来说都知道Java Web的四个作用域 这四个作用域从小到大分别是Page Request Session和Application 其中Application域在应用程序的任何地方都可以使用和 [更多]

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依

【未来发展趋势下的车牌识别技术展望和发展方向】: 展望未来发展趋势下的车牌识别技术和发展方向

![【未来发展趋势下的车牌识别技术展望和发展方向】: 展望未来发展趋势下的车牌识别技术和发展方向](https://img-blog.csdnimg.cn/direct/916e743fde554bcaaaf13800d2f0ac25.png) # 1. 车牌识别技术简介 车牌识别技术是一种通过计算机视觉和深度学习技术,实现对车牌字符信息的自动识别的技术。随着人工智能技术的飞速发展,车牌识别技术在智能交通、安防监控、物流管理等领域得到了广泛应用。通过车牌识别技术,可以实现车辆识别、违章监测、智能停车管理等功能,极大地提升了城市管理和交通运输效率。本章将从基本原理、相关算法和技术应用等方面介绍

javaagent和javassit区别

JavaAgent 和 Javassist 是 Java 开发中常用的两个概念,它们在功能和应用场景上有一些区别。 JavaAgent 是 Java 虚拟机 (JVM) 提供的一个机制,允许在程序运行时对字节码进行修改和增强。通过 JavaAgent,开发者可以在应用程序运行期间动态地修改已加载的类或者增加新的类,从而实现对程序行为的改变。JavaAgent 主要应用于性能监控、代码热替换、AOP(面向切面编程)等方面。 Javassist 是一个开源的 Java 字节码操作库,它提供了一组简单易用的 API,用于在运行时修改字节码。Javassist 可以通过修改字节码来实现类似于 Ja

c++校园超市商品信息管理系统课程设计说明书(含源代码) (2).pdf

校园超市商品信息管理系统课程设计旨在帮助学生深入理解程序设计的基础知识,同时锻炼他们的实际操作能力。通过设计和实现一个校园超市商品信息管理系统,学生掌握了如何利用计算机科学与技术知识解决实际问题的能力。在课程设计过程中,学生需要对超市商品和销售员的关系进行有效管理,使系统功能更全面、实用,从而提高用户体验和便利性。 学生在课程设计过程中展现了积极的学习态度和纪律,没有缺勤情况,演示过程流畅且作品具有很强的使用价值。设计报告完整详细,展现了对问题的深入思考和解决能力。在答辩环节中,学生能够自信地回答问题,展示出扎实的专业知识和逻辑思维能力。教师对学生的表现予以肯定,认为学生在课程设计中表现出色,值得称赞。 整个课程设计过程包括平时成绩、报告成绩和演示与答辩成绩三个部分,其中平时表现占比20%,报告成绩占比40%,演示与答辩成绩占比40%。通过这三个部分的综合评定,最终为学生总成绩提供参考。总评分以百分制计算,全面评估学生在课程设计中的各项表现,最终为学生提供综合评价和反馈意见。 通过校园超市商品信息管理系统课程设计,学生不仅提升了对程序设计基础知识的理解与应用能力,同时也增强了团队协作和沟通能力。这一过程旨在培养学生综合运用技术解决问题的能力,为其未来的专业发展打下坚实基础。学生在进行校园超市商品信息管理系统课程设计过程中,不仅获得了理论知识的提升,同时也锻炼了实践能力和创新思维,为其未来的职业发展奠定了坚实基础。 校园超市商品信息管理系统课程设计的目的在于促进学生对程序设计基础知识的深入理解与掌握,同时培养学生解决实际问题的能力。通过对系统功能和用户需求的全面考量,学生设计了一个实用、高效的校园超市商品信息管理系统,为用户提供了更便捷、更高效的管理和使用体验。 综上所述,校园超市商品信息管理系统课程设计是一项旨在提升学生综合能力和实践技能的重要教学活动。通过此次设计,学生不仅深化了对程序设计基础知识的理解,还培养了解决实际问题的能力和团队合作精神。这一过程将为学生未来的专业发展提供坚实基础,使其在实际工作中能够胜任更多挑战。