双目视觉手眼标定python
时间: 2023-09-12 10:11:27 浏览: 170
在使用双目视觉进行手眼标定时,可以使用Python中的OpenCV库和其他一些工具来实现。下面是一个基本的双目视觉手眼标定的Python代码示例:
```python
import numpy as np
import cv2
# 标定板的参数
num_cols = 8
num_rows = 6
square_size = 25.0
# 左右相机图像路径
left_image_path = 'left_image.png'
right_image_path = 'right_image.png'
# 棋盘上角点的3D坐标
object_points = np.zeros((num_rows * num_cols, 3), np.float32)
object_points[:, :2] = np.mgrid[0:num_cols, 0:num_rows].T.reshape(-1, 2) * square_size
# 存储所有图像的对象点和图像点
object_points_list = []
left_image_points_list = []
right_image_points_list = []
# 检测棋盘角点
def detect_chessboard_corners(image_path):
image = cv2.imread(image_path)
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
ret, corners = cv2.findChessboardCorners(gray, (num_cols, num_rows), None)
if ret:
object_points_list.append(object_points)
cv2.cornerSubPix(gray, corners, (11, 11), (-1, -1), (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 30, 0.1))
left_image_points_list.append(corners)
cv2.drawChessboardCorners(image, (num_cols, num_rows), corners, ret)
cv2.imshow('image', image)
cv2.waitKey(0)
cv2.destroyAllWindows()
# 分别检测左右图像的棋盘角点
detect_chessboard_corners(left_image_path)
detect_chessboard_corners(right_image_path)
# 执行手眼标定
ret, camera_matrix_left, dist_coeffs_left, camera_matrix_right, dist_coeffs_right, R, T, E, F = \
cv2.stereoCalibrate(object_points_list, left_image_points_list, right_image_points_list, None, None, None, None,
(640, 480), cv2.CALIB_FIX_INTRINSIC)
# 输出标定结果
print("Camera Matrix Left:\n", camera_matrix_left)
print("Distortion Coefficients Left:\n", dist_coeffs_left)
print("Camera Matrix Right:\n", camera_matrix_right)
print("Distortion Coefficients Right:\n", dist_coeffs_right)
print("Rotation Matrix:\n", R)
print("Translation Vector:\n", T)
print("Essential Matrix:\n", E)
print("Fundamental Matrix:\n", F)
```
你需要将`left_image.png`和`right_image.png`替换为你自己的左右相机图像路径。此代码将检测并标定棋盘角点,然后执行手眼标定,并输出相机矩阵、畸变系数、旋转矩阵、平移向量、本质矩阵和基础矩阵等标定结果。
当然,在实际应用中,可能还需要进行图像去畸变、立体匹配等后续处理。这里只是一个基本的示例代码,你可以根据实际需要进行修改和扩展。
阅读全文